Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability

[Display omitted] Cationic surfactants (CS) pillared Ti3C2 composites (Ti3C2/CS) were prepared by a facile electrostatic assembly method, which have large interlayer spacing and slight N-doping. In hybrid magnesium-lithium batteries (HMLBs), the Ti3C2/CS composites exhibit excellent performance by u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-02, Vol.608, p.2455-2462
Hauptverfasser: Li, Xiaohui, Tang, Yakun, Liu, Lang, Zhang, Yue, Sheng, Rui, NuLi, Yanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Cationic surfactants (CS) pillared Ti3C2 composites (Ti3C2/CS) were prepared by a facile electrostatic assembly method, which have large interlayer spacing and slight N-doping. In hybrid magnesium-lithium batteries (HMLBs), the Ti3C2/CS composites exhibit excellent performance by utilizing both Li+ and Mg2+ as charge carriers. Among these composites, the Ti3C2/CTAB (CTC) electrode displays a reversible capacity of 115.9 and 60 mAh g−1 in APC/LiCl (APCL) and APC electrolytes at 0.1 A g−1, and it also exhibits excellent high rate performance and ultralong cycle performance. It is verified that CS is vital to significantly improve the diffusion kinetics of Mg2+ on the electrode surface. The CS can act as the conductive “bridge” which connects different Ti3C2 layers and the interlayer pillar which expands the interlayer distance. In addition, the N element in CS is effective in neutralizing electronegativity and enhancing electrical conductivity for the CTC electrode. The electrode design strategy can adapt to the synthesis of cathode materials with high rate capability in HMLBs.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.10.175