An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images
Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer. Specifically, spitzoid melanocytic tumors are one of the most challenging melanocytic lesions due to their ambiguous morphological features. The gold standard for its diagnosis and prognosis is the analysis o...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2021-11, Vol.121, p.102197-102197, Article 102197 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer. Specifically, spitzoid melanocytic tumors are one of the most challenging melanocytic lesions due to their ambiguous morphological features. The gold standard for its diagnosis and prognosis is the analysis of skin biopsies. In this process, dermatopathologists visualize skin histology slides under a microscope, in a highly time-consuming and subjective task. In the last years, computer-aided diagnosis (CAD) systems have emerged as a promising tool that could support pathologists in daily clinical practice. Nevertheless, no automatic CAD systems have yet been proposed for the analysis of spitzoid lesions. Regarding common melanoma, no system allows both the selection of the tumor region and the prediction of the benign or malignant form in the diagnosis. Motivated by this, we propose a novel end-to-end weakly supervised deep learning model, based on inductive transfer learning with an improved convolutional neural network (CNN) to refine the embedding features of the latent space. The framework is composed of a source model in charge of finding the tumor patch-level patterns, and a target model focuses on the specific diagnosis of a biopsy. The latter retrains the backbone of the source model through a multiple instance learning workflow to obtain the biopsy-level scoring. To evaluate the performance of the proposed methods, we performed extensive experiments on a private skin database with spitzoid lesions. Test results achieved an accuracy of 0.9231 and 0.80 for the source and the target models, respectively. In addition, the heat map findings are directly in line with the clinicians' medical decision and even highlight, in some cases, patterns of interest that were overlooked by the pathologist.
•Spitzoid histological images are used for the first time to develop an automatic system able to predict the malignancy of spitzoid melanocytic.•A new histology-based backbone based on feature refinement via attention layers and squeeze and excitation blocks to extract more accurate features is proposed.•A novel framework based on inductive transfer learning to solve at the same time ROI selection and malignancy detection is developed.•An end-to-end system able to classify melanocytic lesions by aggregating tumor regions' features is proposed.•The heat maps extracted by computing the class activation maps are directly in line with the clinician's opinion since the highlig |
---|---|
ISSN: | 0933-3657 1873-2860 |
DOI: | 10.1016/j.artmed.2021.102197 |