A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems

In this paper, a formulation is presented for the finite element treatment of multibody, large deformation frictional contact problems. The term multibody is used to mean that when two bodies mechanically contact, both may be deformable. A novel aspect of the approach advocated is that the equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1993-10, Vol.36 (20), p.3451-3485
Hauptverfasser: Laursen, T. A., Simo, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a formulation is presented for the finite element treatment of multibody, large deformation frictional contact problems. The term multibody is used to mean that when two bodies mechanically contact, both may be deformable. A novel aspect of the approach advocated is that the equations governing contact are developed in the continuum setting first, before deriving the corresponding finite element equations This feature distinguishes the current work from many earlier treatments of contact problems and renders it considerably more general. In particular, the approach yields a characterization of the frictional constraint (assuming a Coulomb law) suitable for arbitrary discretizations in either two or three dimensions. A geometric framework is constructed within which both frictionless and frictional response are naturally described, making subsequent finite element discretization a straightforward substitution of finite‐dimensional solution spaces for their continuum counterparts. To our knowledge, this general formulation and implementation of the frictional contact problem in a finite element setting has not been reported previously in the literature. The development includes exact linearization of the statement of virtual work, which enables optimal convergence properties for Newton‐Raphson solution strategies, and which appears to be highly desirable (if not essential) for the general robustness of implicit finite element techniques. Since the theory and subsequent linearization require no limitations on the amount of deformation or relative sliding that can occur, the resulting treatment of frictional contact is suitable for a wide range of examples displaying significant non‐linear behaviour. This assertion is substantiated through presentation of a variety of examples in both two and three dimensions.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.1620362005