Divalent Ion Specific Outcomes on Stern Layer Structure and Total Surface Potential at the Silica:Water Interface

The second-order nonlinear susceptibility, χ(2), in the Stern layer and the total interfacial potential drop, Φ(0)tot, across the oxide:water interface are estimated from SHG amplitude and phase measurements for divalent cations (Mg2+, Ca2+, Sr2+, and Ba2+) at the silica:water interface at pH 5.8 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-11, Vol.125 (46), p.10079-10088
Hauptverfasser: Ma, Emily, Geiger, Franz M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The second-order nonlinear susceptibility, χ(2), in the Stern layer and the total interfacial potential drop, Φ(0)tot, across the oxide:water interface are estimated from SHG amplitude and phase measurements for divalent cations (Mg2+, Ca2+, Sr2+, and Ba2+) at the silica:water interface at pH 5.8 and various ionic strengths. We find that interfacial structure and total potential depend strongly on ion valency. We observe statistically significant differences between the experimentally determined χ(2) value for NaCl and that of the alkali earth series but smaller differences between ions of the same valency in that series. These differences are particularly pronounced at intermediate salt concentrations, which we attribute to the influence of hydration structure in the Stern layer. Furthermore, we corroborate the differences by examining the effects of anion substitution (SO4 2– for Cl–). Finally, we identify that hysteresis in measuring the reversibility of ion adsorption and desorption at fused silica in forward and reverse titrations manifests itself both in Stern layer structure and in total interfacial potential for some of the salts, most notably for CaCl2 and MgSO4 but less so for BaCl2 and NaCl.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.1c08143