Mechanical, antibacterial, biocompatible and microleakage evaluation of glass ionomer cement modified by nanohydroxyapatite/polyhexamethylene biguanide
This study aims to look for the best concentration of nanohydroxyapatite (NHA) and polyhexamethylene biguanide (PHMB) incorporated into glass ionomer cement (GIC) in accordance with ISO:9917-1 and evaluate its mechanical, antibacterial, biocompatible and microleakages properties. NHA was incorporate...
Gespeichert in:
Veröffentlicht in: | Dental Materials Journal 2022/03/25, Vol.41(2), pp.197-208 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to look for the best concentration of nanohydroxyapatite (NHA) and polyhexamethylene biguanide (PHMB) incorporated into glass ionomer cement (GIC) in accordance with ISO:9917-1 and evaluate its mechanical, antibacterial, biocompatible and microleakages properties. NHA was incorporated into Fuji Ⅱ GIC powder at 0–8.00 wt% concentration and specimens were prepared; the best concentration was sifted out according to ISO9917-1. Based on best NHA proportion, 0–0.80% PHMB was dispersed into powder and samples were respectively prepared. Mechanical properties include net setting time (ST), compressive strength (CS), microhardness (VNH), solubility and scanning electron microscopy (SEM) observation. Those met ISO standard were qualified to continue microleakage observation, antibacterial activity, and biocompatibility test. The results suggested that GIC/6%NHA/0.2% PHMB and GIC/6%NHA/0.4%PHMB showed great performances in mechanical, antibacterial, and microleakage improvements, and the cytotoxicity of modified GIC showed no statistical difference with pure GIC. |
---|---|
ISSN: | 0287-4547 1881-1361 |
DOI: | 10.4012/dmj.2021-096 |