QUANTIFICATION OF UNCERTAINTY IN CLASSIFICATION RULES DISCOVERED FROM DATABASES

We apply rough set constructs to inductive learning from a database. A design guideline is suggested, which provides users the option to choose appropriate attributes, for the construction of data classification rules. Error probabilities for the resultant rule are derived. A classification rule can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 1995-05, Vol.11 (2), p.427-441
Hauptverfasser: Xiang, Y., Wong, S. K. M., Cercone, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply rough set constructs to inductive learning from a database. A design guideline is suggested, which provides users the option to choose appropriate attributes, for the construction of data classification rules. Error probabilities for the resultant rule are derived. A classification rule can be further generalized using concept hierarchies. The condition for preventing overgeneralization is derived. Moreover, given a constraint, an algorithm for generating a rule with minimal error probability is proposed.
ISSN:0824-7935
1467-8640
DOI:10.1111/j.1467-8640.1995.tb00042.x