Bounds on sample space size for matrix product verification

We show that the size of any sample space that could be used in Freivalds' probabilistic matrix product verification algorithm for n × n matrices is at least ( n − 1)/ ε if the probability of error is at most ε, matching the upper bound of Kimbrel and Sinha. We also provide a characterization o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1993-11, Vol.48 (2), p.87-91
Hauptverfasser: Chinn, Donald D., Sinha, Rakesh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the size of any sample space that could be used in Freivalds' probabilistic matrix product verification algorithm for n × n matrices is at least ( n − 1)/ ε if the probability of error is at most ε, matching the upper bound of Kimbrel and Sinha. We also provide a characterization of any sample space for which Freivalds' algorithm has probability of error at most ε. We then provide a generalization of Freivalds' algorithm and give a tight lower bound on the time-randomness tradeoff for this class of algorithms.
ISSN:0020-0190
1872-6119
DOI:10.1016/0020-0190(93)90183-A