Bounds on sample space size for matrix product verification
We show that the size of any sample space that could be used in Freivalds' probabilistic matrix product verification algorithm for n × n matrices is at least ( n − 1)/ ε if the probability of error is at most ε, matching the upper bound of Kimbrel and Sinha. We also provide a characterization o...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1993-11, Vol.48 (2), p.87-91 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the size of any sample space that could be used in Freivalds' probabilistic matrix product verification algorithm for
n ×
n matrices is at least (
n − 1)/
ε if the probability of error is at most
ε, matching the upper bound of Kimbrel and Sinha. We also provide a characterization of any sample space for which Freivalds' algorithm has probability of error at most
ε. We then provide a generalization of Freivalds' algorithm and give a tight lower bound on the time-randomness tradeoff for this class of algorithms. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/0020-0190(93)90183-A |