Visible light-driven conjunctive olefination
Carboxylic acids and aldehydes are ubiquitous in chemistry and are native functionalities in many bioactive molecules and natural products. As such, a general cross-coupling process that involves these partners would open new avenues to achieve molecular diversity. Here we report a visible-light-med...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2022-01, Vol.14 (1), p.66-70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carboxylic acids and aldehydes are ubiquitous in chemistry and are native functionalities in many bioactive molecules and natural products. As such, a general cross-coupling process that involves these partners would open new avenues to achieve molecular diversity. Here we report a visible-light-mediated and transition metal-free conjunctive olefination that uses an alkene ‘linchpin’ with a defined geometry to cross-couple complex molecular scaffolds that contain carboxylic acids and aldehydes. The chemistry merges two cornerstones of organic synthesis—namely, the Wittig reaction and photoredox catalysis—in a catalytic cycle that couples a radical addition process with the redox generation of a phosphonium ylide. The methodology allows the rapid structural diversification of bioactive molecules and natural products in a native form, with a high functional group tolerance, and also forges a new alkene functional group with a programmable
E
–
Z
stereochemistry.
A conjunctive olefination between aldehydes and carboxylic acids has been developed by merging photoredox catalysis with the Wittig reaction. The process uses a readily available phosphonium salt to join together complex molecular fragments with high functional group tolerance and minimal use of protecting groups, enabling access to coupling products with user-defined geometries. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/s41557-021-00807-x |