Molecular recognition and interaction between human plasminogen Kringle 5 and voltage-dependent anion channel-1 by biological specificity technologies and molecular dynamic simulation
Voltage-dependent anion channel-l (VDAC-1) can bind with plasminogen Kringle 5 as the cell surface receptor and induce cell apoptosis, but the detailed information of binding is not clear yet. Thus, the mutual recognition and binding were investigated here utilizing frontal affinity chromatography,...
Gespeichert in:
Veröffentlicht in: | Biophysical chemistry 2022-01, Vol.280, p.106710-106710, Article 106710 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Voltage-dependent anion channel-l (VDAC-1) can bind with plasminogen Kringle 5 as the cell surface receptor and induce cell apoptosis, but the detailed information of binding is not clear yet. Thus, the mutual recognition and binding were investigated here utilizing frontal affinity chromatography, surface plasma resonance, mutation analysis combining molecular dynamics simulation. The results showed that Kringle 5 binds with VDAC-1 in equimolar driven mainly by electrostatic force, with 15 amino acid residues participating in Kringle 5 and 21 in VDAC-1. The observed conformational changes indicated the automatic structure regulation providing these two proteins suitable conformations and spatial surroundings for the tighter and stabler binding. Moreover, Glu29 in Kringle 5 was speculated as the key residue maintaining the largest energy contribution. Therefore, this work provided precise information for the recognition and binding of Kringle 5 with VDAC-1 that is valuable for the corresponding treatment of tumours or other angiogenic diseases.
[Display omitted]
•Automatic structure regulation facilitates the binding of Kringle 5 with VDAC-1.•The binding was studied by experimental measurement and theoretical prediction.•Conformational changes include two coils to β-sheets and two β-sheets to coils.•Glu29 was proved as the key amino acid residue with the largest energy contribution. |
---|---|
ISSN: | 0301-4622 1873-4200 |
DOI: | 10.1016/j.bpc.2021.106710 |