Engineering Self-Adhesive Polyzwitterionic Hydrogel Electrolytes for Flexible Zinc-Ion Hybrid Capacitors with Superior Low-Temperature Adaptability

Flexible zinc-ion hybrid capacitors (ZIHCs) based on hydrogel electrolytes are an up-and-coming and highly promising candidate for potential large-scale energy storage due to their combined complementary advantages of zinc batteries and capacitors. However, the freezing induces a sharp drop in condu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-11, Vol.15 (11), p.18469-18482
Hauptverfasser: Fu, Qingjin, Hao, Sanwei, Meng, Lei, Xu, Feng, Yang, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible zinc-ion hybrid capacitors (ZIHCs) based on hydrogel electrolytes are an up-and-coming and highly promising candidate for potential large-scale energy storage due to their combined complementary advantages of zinc batteries and capacitors. However, the freezing induces a sharp drop in conductivity and mechanical property with tremendous compromise of the interfacial adhesion, thereby severely impeding the low-temperature application of such flexible ZIHCs. To achieve the flexible ZIHCs with excellent low-temperature adaptability, an antifreezing and self-adhesive polyzwitterionic hydrogel electrolyte (PZHE) is engineered via a self-catalytic nano-reinforced strategy, affording unparalleled conductivity and robust interfacial adhesion, together with superhigh mechanical strength over a broad temperature ranging from 25 to −60 °C. Meanwhile, the water-in-salt-type PZHE filled with ZnCl2 can provide ion migration channels to enhance the reversibility of Zn metal electrodes, thus greatly reducing side reactions and extending the cycling life. With distinctive integrated merits of the water-in-salt type PZHE, the as-built ZIHCs deliver a high-level energy density of 80.5 Wh kg–1, a desired specific capacity of 81.5 mAh g–1, along with a long-duration cycling lifespan (100 000 cycles) with 84.6% capacity retention at −40 °C, even outperforming the state-of-the-art ZIHCs at room temperature. More encouragingly, the extraordinary temperature-adaptability for both electrochemical and mechanical performance under severe mechanical challenges is achieved for the flexible ZIHCs at extremely low temperature. Noticeably, the ZIHC is also capable of operating in an ice–water bath and vacuum. It is believed that this strategy makes contributions to inspire the design and application of high-performance PZHEs in fields of flexible and wearable electronics that can work in extremely cold environments.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c08193