Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys
The urgent need for clean energy coupled with the exceptional promise of hydrogen (H) as a clean fuel is driving development of new metals resistant to hydrogen embrittlement. Experiments on new fcc high entropy alloys present a paradox: these alloys absorb more H than Ni or SS304 (austenitic 304 st...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-10, Vol.127 (17), p.1-175501, Article 175501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The urgent need for clean energy coupled with the exceptional promise of hydrogen (H) as a clean fuel is driving development of new metals resistant to hydrogen embrittlement. Experiments on new fcc high entropy alloys present a paradox: these alloys absorb more H than Ni or SS304 (austenitic 304 stainless steel) while being more resistant to embrittlement. Here, a new theory of embrittlement in fcc metals is presented based on the role of H in driving an intrinsic ductile-to-brittle transition at a crack tip. The theory quantitatively predicts the H concentration at which a transition to embrittlement occurs in good agreement with experiments for SS304, SS316L, CoCrNi, CoNiV, CoCrFeNi, and CoCrFeMnNi. The theory rationalizes why CoNiV is the alloy most resistant to embrittlement and why SS316L is more resistant than the high entropy alloys CoCrFeNi and CoCrFeMnNi, which opens a path for the computationally guided discovery of new embrittlement-resistant alloys. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.175501 |