Direct Conversion of Cell Fate and Induced Endothelial Cells

Advances in nuclear reprogramming technology have enabled the dedifferentiation and transdifferentiation of mammalian cells. Forced induction of the key transcription factors constituting a transcriptional network can convert cells back to their pluripotent status or directly to another cell fate wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation Journal 2022/11/25, Vol.86(12), pp.1925-1933
Hauptverfasser: Han, Jung-Kyu, Shin, Youngchul, Kim, Hyo-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in nuclear reprogramming technology have enabled the dedifferentiation and transdifferentiation of mammalian cells. Forced induction of the key transcription factors constituting a transcriptional network can convert cells back to their pluripotent status or directly to another cell fate without inducing pluripotency. To date, direct conversion to several cell types, including cardiomyocytes, various types of neurons, and pancreatic β-cells, has been reported. We previously demonstrated direct lineage reprogramming of adult fibroblasts into induced endothelial cells (iECs) in mice and humans. In contrast to induced pluripotent stem cells, for which there is consensus on the criteria defining pluripotency, such criteria have not yet been established in the field of direct conversion. We thus suggest that careful assessment of the status of converted cells using genetic and epigenetic profiling, various functional assays, and the use of multiple readouts is essential to determine successful conversion. As direct conversion does not go through pluripotent status, this technique can be utilized for therapeutic purposes without the risk of tumorigenesis. Further, direct conversion can be induced in vivo by gene delivery to the target tissue or organ in situ. Thus, direct conversion technology can be developed into cell therapy or gene therapy for regenerative purposes. Here, we review the potential and future directions of direct cell fate conversion and iECs.
ISSN:1346-9843
1347-4820
DOI:10.1253/circj.CJ-21-0703