The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration
Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain...
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-11, Vol.4 (1), p.1260-1260, Article 1260 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 1 |
container_start_page | 1260 |
container_title | Communications biology |
container_volume | 4 |
creator | Ahmed, Mohi Moon, Ruth Prajapati, Ravindra Singh James, Elysia Basson, M. Albert Streit, Andrea |
description | Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that
CHD7
controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans,
CHD7
haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that
CHD7
mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms.
To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome. |
doi_str_mv | 10.1038/s42003-021-02788-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2593598832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a92fb875cfc14184bbec21667fb5460f</doaj_id><sourcerecordid>2593598832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</originalsourceid><addsrcrecordid>eNqNks1rFDEYxgdRbKn9BzxIwIsgo_me5CLI4keh4KWeQybzZjfLbrImM5b-92Z26tp6EA8h4c3vefImeZrmJcHvCGbqfeEUY9ZiSurolGrlk-acMq1bJjl9-mB91lyWssUYE621ZPx5c8Z4x6ii_Ly5vdkAcpuc9nYMEWXYpwF2uxDXyFs3poxWm6FDh5xGcGNBdhpCrd6hCFNOsRbigArEMtc2NmTkqrwgXx1RGTOU0oY4TA4GNMAaIuR6UIovmmfe7gpc3s8XzffPn25WX9vrb1-uVh-vWyc4HltCpCTEWoWlot4T6K0eetoJ6pjtXS90h2XneSeVVMJiDk4CBa0Aa-8Hyi6aq8V3SHZrDjnsbb4zyQZzLKS8NjaPwe3AWE19rzrhvCOcKN734Gg9v_O94BL76vVh8TpM_R4GB3HMdvfI9PFODBuzTj-NElIKLKrBm3uDnH5MUEazD2V-LxshTcVQoZnQSrG579d_ods05VifaqZoJwXnM0UXyuVUSgZ_aoZgM8fELDExNSbmGBMjq-jVw2ucJL9DUYG3C3ALffLFBYgOTlgNUkc404zVFZ5p9f_0KozH71-lKY5VyhZpqXhcQ_5zyX_0_wtgXetA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592765442</pqid></control><display><type>article</type><title>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Ahmed, Mohi ; Moon, Ruth ; Prajapati, Ravindra Singh ; James, Elysia ; Basson, M. Albert ; Streit, Andrea</creator><creatorcontrib>Ahmed, Mohi ; Moon, Ruth ; Prajapati, Ravindra Singh ; James, Elysia ; Basson, M. Albert ; Streit, Andrea</creatorcontrib><description>Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that
CHD7
controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans,
CHD7
haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that
CHD7
mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms.
To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-02788-6</identifier><identifier>PMID: 34732824</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14 ; 14/63 ; 38/1 ; 38/39 ; 38/91 ; 631/136/1425 ; 631/378 ; 64 ; 64/60 ; Animals ; Biology ; Biomedical and Life Sciences ; CHARGE syndrome ; Chromatin remodeling ; Cochlear Nerve - physiopathology ; Degeneration ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA-binding protein ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Ear ; Embryos ; Female ; Hair cells ; Hair Cells, Auditory - physiology ; Haploinsufficiency ; Hearing loss ; Hearing protection ; Humans ; Life Sciences ; Life Sciences & Biomedicine ; Life Sciences & Biomedicine - Other Topics ; Male ; Mice ; Multidisciplinary Sciences ; Mutation ; Neurons ; Oxidative stress ; Phenotype ; Phenotypes ; Science & Technology ; Science & Technology - Other Topics ; Sensory neurons ; Stress, Physiological</subject><ispartof>Communications biology, 2021-11, Vol.4 (1), p.1260-1260, Article 1260</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000714393300004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</citedby><cites>FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</cites><orcidid>0000-0001-7664-7917 ; 0000-0001-9834-7528 ; 0000-0003-2028-6475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566505/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566505/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,41124,42193,51580,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34732824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Mohi</creatorcontrib><creatorcontrib>Moon, Ruth</creatorcontrib><creatorcontrib>Prajapati, Ravindra Singh</creatorcontrib><creatorcontrib>James, Elysia</creatorcontrib><creatorcontrib>Basson, M. Albert</creatorcontrib><creatorcontrib>Streit, Andrea</creatorcontrib><title>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>COMMUN BIOL</addtitle><addtitle>Commun Biol</addtitle><description>Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that
CHD7
controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans,
CHD7
haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that
CHD7
mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms.
To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.</description><subject>13/51</subject><subject>14</subject><subject>14/63</subject><subject>38/1</subject><subject>38/39</subject><subject>38/91</subject><subject>631/136/1425</subject><subject>631/378</subject><subject>64</subject><subject>64/60</subject><subject>Animals</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>CHARGE syndrome</subject><subject>Chromatin remodeling</subject><subject>Cochlear Nerve - physiopathology</subject><subject>Degeneration</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA-binding protein</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Ear</subject><subject>Embryos</subject><subject>Female</subject><subject>Hair cells</subject><subject>Hair Cells, Auditory - physiology</subject><subject>Haploinsufficiency</subject><subject>Hearing loss</subject><subject>Hearing protection</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>Male</subject><subject>Mice</subject><subject>Multidisciplinary Sciences</subject><subject>Mutation</subject><subject>Neurons</subject><subject>Oxidative stress</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Sensory neurons</subject><subject>Stress, Physiological</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEYxgdRbKn9BzxIwIsgo_me5CLI4keh4KWeQybzZjfLbrImM5b-92Z26tp6EA8h4c3vefImeZrmJcHvCGbqfeEUY9ZiSurolGrlk-acMq1bJjl9-mB91lyWssUYE621ZPx5c8Z4x6ii_Ly5vdkAcpuc9nYMEWXYpwF2uxDXyFs3poxWm6FDh5xGcGNBdhpCrd6hCFNOsRbigArEMtc2NmTkqrwgXx1RGTOU0oY4TA4GNMAaIuR6UIovmmfe7gpc3s8XzffPn25WX9vrb1-uVh-vWyc4HltCpCTEWoWlot4T6K0eetoJ6pjtXS90h2XneSeVVMJiDk4CBa0Aa-8Hyi6aq8V3SHZrDjnsbb4zyQZzLKS8NjaPwe3AWE19rzrhvCOcKN734Gg9v_O94BL76vVh8TpM_R4GB3HMdvfI9PFODBuzTj-NElIKLKrBm3uDnH5MUEazD2V-LxshTcVQoZnQSrG579d_ods05VifaqZoJwXnM0UXyuVUSgZ_aoZgM8fELDExNSbmGBMjq-jVw2ucJL9DUYG3C3ALffLFBYgOTlgNUkc404zVFZ5p9f_0KozH71-lKY5VyhZpqXhcQ_5zyX_0_wtgXetA</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Ahmed, Mohi</creator><creator>Moon, Ruth</creator><creator>Prajapati, Ravindra Singh</creator><creator>James, Elysia</creator><creator>Basson, M. Albert</creator><creator>Streit, Andrea</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7664-7917</orcidid><orcidid>https://orcid.org/0000-0001-9834-7528</orcidid><orcidid>https://orcid.org/0000-0003-2028-6475</orcidid></search><sort><creationdate>20211103</creationdate><title>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</title><author>Ahmed, Mohi ; Moon, Ruth ; Prajapati, Ravindra Singh ; James, Elysia ; Basson, M. Albert ; Streit, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/51</topic><topic>14</topic><topic>14/63</topic><topic>38/1</topic><topic>38/39</topic><topic>38/91</topic><topic>631/136/1425</topic><topic>631/378</topic><topic>64</topic><topic>64/60</topic><topic>Animals</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>CHARGE syndrome</topic><topic>Chromatin remodeling</topic><topic>Cochlear Nerve - physiopathology</topic><topic>Degeneration</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA-binding protein</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Ear</topic><topic>Embryos</topic><topic>Female</topic><topic>Hair cells</topic><topic>Hair Cells, Auditory - physiology</topic><topic>Haploinsufficiency</topic><topic>Hearing loss</topic><topic>Hearing protection</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>Male</topic><topic>Mice</topic><topic>Multidisciplinary Sciences</topic><topic>Mutation</topic><topic>Neurons</topic><topic>Oxidative stress</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Sensory neurons</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Mohi</creatorcontrib><creatorcontrib>Moon, Ruth</creatorcontrib><creatorcontrib>Prajapati, Ravindra Singh</creatorcontrib><creatorcontrib>James, Elysia</creatorcontrib><creatorcontrib>Basson, M. Albert</creatorcontrib><creatorcontrib>Streit, Andrea</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Mohi</au><au>Moon, Ruth</au><au>Prajapati, Ravindra Singh</au><au>James, Elysia</au><au>Basson, M. Albert</au><au>Streit, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><stitle>COMMUN BIOL</stitle><addtitle>Commun Biol</addtitle><date>2021-11-03</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>1260</spage><epage>1260</epage><pages>1260-1260</pages><artnum>1260</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that
CHD7
controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans,
CHD7
haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that
CHD7
mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms.
To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34732824</pmid><doi>10.1038/s42003-021-02788-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7664-7917</orcidid><orcidid>https://orcid.org/0000-0001-9834-7528</orcidid><orcidid>https://orcid.org/0000-0003-2028-6475</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2021-11, Vol.4 (1), p.1260-1260, Article 1260 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_proquest_miscellaneous_2593598832 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Nature Free; PubMed Central; Springer Nature OA/Free Journals |
subjects | 13/51 14 14/63 38/1 38/39 38/91 631/136/1425 631/378 64 64/60 Animals Biology Biomedical and Life Sciences CHARGE syndrome Chromatin remodeling Cochlear Nerve - physiopathology Degeneration Deoxyribonucleic acid DNA DNA helicase DNA-binding protein DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Ear Embryos Female Hair cells Hair Cells, Auditory - physiology Haploinsufficiency Hearing loss Hearing protection Humans Life Sciences Life Sciences & Biomedicine Life Sciences & Biomedicine - Other Topics Male Mice Multidisciplinary Sciences Mutation Neurons Oxidative stress Phenotype Phenotypes Science & Technology Science & Technology - Other Topics Sensory neurons Stress, Physiological |
title | The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chromatin%20remodelling%20factor%20Chd7%20protects%20auditory%20neurons%20and%20sensory%20hair%20cells%20from%20stress-induced%20degeneration&rft.jtitle=Communications%20biology&rft.au=Ahmed,%20Mohi&rft.date=2021-11-03&rft.volume=4&rft.issue=1&rft.spage=1260&rft.epage=1260&rft.pages=1260-1260&rft.artnum=1260&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-02788-6&rft_dat=%3Cproquest_pubme%3E2593598832%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592765442&rft_id=info:pmid/34732824&rft_doaj_id=oai_doaj_org_article_a92fb875cfc14184bbec21667fb5460f&rfr_iscdi=true |