The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration

Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-11, Vol.4 (1), p.1260-1260, Article 1260
Hauptverfasser: Ahmed, Mohi, Moon, Ruth, Prajapati, Ravindra Singh, James, Elysia, Basson, M. Albert, Streit, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1260
container_issue 1
container_start_page 1260
container_title Communications biology
container_volume 4
creator Ahmed, Mohi
Moon, Ruth
Prajapati, Ravindra Singh
James, Elysia
Basson, M. Albert
Streit, Andrea
description Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that CHD7 controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans, CHD7 haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that CHD7 mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms. To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.
doi_str_mv 10.1038/s42003-021-02788-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2593598832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a92fb875cfc14184bbec21667fb5460f</doaj_id><sourcerecordid>2593598832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</originalsourceid><addsrcrecordid>eNqNks1rFDEYxgdRbKn9BzxIwIsgo_me5CLI4keh4KWeQybzZjfLbrImM5b-92Z26tp6EA8h4c3vefImeZrmJcHvCGbqfeEUY9ZiSurolGrlk-acMq1bJjl9-mB91lyWssUYE621ZPx5c8Z4x6ii_Ly5vdkAcpuc9nYMEWXYpwF2uxDXyFs3poxWm6FDh5xGcGNBdhpCrd6hCFNOsRbigArEMtc2NmTkqrwgXx1RGTOU0oY4TA4GNMAaIuR6UIovmmfe7gpc3s8XzffPn25WX9vrb1-uVh-vWyc4HltCpCTEWoWlot4T6K0eetoJ6pjtXS90h2XneSeVVMJiDk4CBa0Aa-8Hyi6aq8V3SHZrDjnsbb4zyQZzLKS8NjaPwe3AWE19rzrhvCOcKN734Gg9v_O94BL76vVh8TpM_R4GB3HMdvfI9PFODBuzTj-NElIKLKrBm3uDnH5MUEazD2V-LxshTcVQoZnQSrG579d_ods05VifaqZoJwXnM0UXyuVUSgZ_aoZgM8fELDExNSbmGBMjq-jVw2ucJL9DUYG3C3ALffLFBYgOTlgNUkc404zVFZ5p9f_0KozH71-lKY5VyhZpqXhcQ_5zyX_0_wtgXetA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592765442</pqid></control><display><type>article</type><title>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Ahmed, Mohi ; Moon, Ruth ; Prajapati, Ravindra Singh ; James, Elysia ; Basson, M. Albert ; Streit, Andrea</creator><creatorcontrib>Ahmed, Mohi ; Moon, Ruth ; Prajapati, Ravindra Singh ; James, Elysia ; Basson, M. Albert ; Streit, Andrea</creatorcontrib><description>Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that CHD7 controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans, CHD7 haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that CHD7 mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms. To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-02788-6</identifier><identifier>PMID: 34732824</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14 ; 14/63 ; 38/1 ; 38/39 ; 38/91 ; 631/136/1425 ; 631/378 ; 64 ; 64/60 ; Animals ; Biology ; Biomedical and Life Sciences ; CHARGE syndrome ; Chromatin remodeling ; Cochlear Nerve - physiopathology ; Degeneration ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA-binding protein ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Ear ; Embryos ; Female ; Hair cells ; Hair Cells, Auditory - physiology ; Haploinsufficiency ; Hearing loss ; Hearing protection ; Humans ; Life Sciences ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; Male ; Mice ; Multidisciplinary Sciences ; Mutation ; Neurons ; Oxidative stress ; Phenotype ; Phenotypes ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Sensory neurons ; Stress, Physiological</subject><ispartof>Communications biology, 2021-11, Vol.4 (1), p.1260-1260, Article 1260</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000714393300004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</citedby><cites>FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</cites><orcidid>0000-0001-7664-7917 ; 0000-0001-9834-7528 ; 0000-0003-2028-6475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566505/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566505/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,41124,42193,51580,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34732824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Mohi</creatorcontrib><creatorcontrib>Moon, Ruth</creatorcontrib><creatorcontrib>Prajapati, Ravindra Singh</creatorcontrib><creatorcontrib>James, Elysia</creatorcontrib><creatorcontrib>Basson, M. Albert</creatorcontrib><creatorcontrib>Streit, Andrea</creatorcontrib><title>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>COMMUN BIOL</addtitle><addtitle>Commun Biol</addtitle><description>Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that CHD7 controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans, CHD7 haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that CHD7 mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms. To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.</description><subject>13/51</subject><subject>14</subject><subject>14/63</subject><subject>38/1</subject><subject>38/39</subject><subject>38/91</subject><subject>631/136/1425</subject><subject>631/378</subject><subject>64</subject><subject>64/60</subject><subject>Animals</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>CHARGE syndrome</subject><subject>Chromatin remodeling</subject><subject>Cochlear Nerve - physiopathology</subject><subject>Degeneration</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA-binding protein</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Ear</subject><subject>Embryos</subject><subject>Female</subject><subject>Hair cells</subject><subject>Hair Cells, Auditory - physiology</subject><subject>Haploinsufficiency</subject><subject>Hearing loss</subject><subject>Hearing protection</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>Male</subject><subject>Mice</subject><subject>Multidisciplinary Sciences</subject><subject>Mutation</subject><subject>Neurons</subject><subject>Oxidative stress</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Sensory neurons</subject><subject>Stress, Physiological</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEYxgdRbKn9BzxIwIsgo_me5CLI4keh4KWeQybzZjfLbrImM5b-92Z26tp6EA8h4c3vefImeZrmJcHvCGbqfeEUY9ZiSurolGrlk-acMq1bJjl9-mB91lyWssUYE621ZPx5c8Z4x6ii_Ly5vdkAcpuc9nYMEWXYpwF2uxDXyFs3poxWm6FDh5xGcGNBdhpCrd6hCFNOsRbigArEMtc2NmTkqrwgXx1RGTOU0oY4TA4GNMAaIuR6UIovmmfe7gpc3s8XzffPn25WX9vrb1-uVh-vWyc4HltCpCTEWoWlot4T6K0eetoJ6pjtXS90h2XneSeVVMJiDk4CBa0Aa-8Hyi6aq8V3SHZrDjnsbb4zyQZzLKS8NjaPwe3AWE19rzrhvCOcKN734Gg9v_O94BL76vVh8TpM_R4GB3HMdvfI9PFODBuzTj-NElIKLKrBm3uDnH5MUEazD2V-LxshTcVQoZnQSrG579d_ods05VifaqZoJwXnM0UXyuVUSgZ_aoZgM8fELDExNSbmGBMjq-jVw2ucJL9DUYG3C3ALffLFBYgOTlgNUkc404zVFZ5p9f_0KozH71-lKY5VyhZpqXhcQ_5zyX_0_wtgXetA</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Ahmed, Mohi</creator><creator>Moon, Ruth</creator><creator>Prajapati, Ravindra Singh</creator><creator>James, Elysia</creator><creator>Basson, M. Albert</creator><creator>Streit, Andrea</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7664-7917</orcidid><orcidid>https://orcid.org/0000-0001-9834-7528</orcidid><orcidid>https://orcid.org/0000-0003-2028-6475</orcidid></search><sort><creationdate>20211103</creationdate><title>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</title><author>Ahmed, Mohi ; Moon, Ruth ; Prajapati, Ravindra Singh ; James, Elysia ; Basson, M. Albert ; Streit, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-116611aa80682ff1eba9db2752c3abcb597067f4768685a04ec6e2e98e09ffd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/51</topic><topic>14</topic><topic>14/63</topic><topic>38/1</topic><topic>38/39</topic><topic>38/91</topic><topic>631/136/1425</topic><topic>631/378</topic><topic>64</topic><topic>64/60</topic><topic>Animals</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>CHARGE syndrome</topic><topic>Chromatin remodeling</topic><topic>Cochlear Nerve - physiopathology</topic><topic>Degeneration</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA-binding protein</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Ear</topic><topic>Embryos</topic><topic>Female</topic><topic>Hair cells</topic><topic>Hair Cells, Auditory - physiology</topic><topic>Haploinsufficiency</topic><topic>Hearing loss</topic><topic>Hearing protection</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>Male</topic><topic>Mice</topic><topic>Multidisciplinary Sciences</topic><topic>Mutation</topic><topic>Neurons</topic><topic>Oxidative stress</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Sensory neurons</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Mohi</creatorcontrib><creatorcontrib>Moon, Ruth</creatorcontrib><creatorcontrib>Prajapati, Ravindra Singh</creatorcontrib><creatorcontrib>James, Elysia</creatorcontrib><creatorcontrib>Basson, M. Albert</creatorcontrib><creatorcontrib>Streit, Andrea</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Mohi</au><au>Moon, Ruth</au><au>Prajapati, Ravindra Singh</au><au>James, Elysia</au><au>Basson, M. Albert</au><au>Streit, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><stitle>COMMUN BIOL</stitle><addtitle>Commun Biol</addtitle><date>2021-11-03</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>1260</spage><epage>1260</epage><pages>1260-1260</pages><artnum>1260</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that CHD7 controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans, CHD7 haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that CHD7 mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms. To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34732824</pmid><doi>10.1038/s42003-021-02788-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7664-7917</orcidid><orcidid>https://orcid.org/0000-0001-9834-7528</orcidid><orcidid>https://orcid.org/0000-0003-2028-6475</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2021-11, Vol.4 (1), p.1260-1260, Article 1260
issn 2399-3642
2399-3642
language eng
recordid cdi_proquest_miscellaneous_2593598832
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Nature Free; PubMed Central; Springer Nature OA/Free Journals
subjects 13/51
14
14/63
38/1
38/39
38/91
631/136/1425
631/378
64
64/60
Animals
Biology
Biomedical and Life Sciences
CHARGE syndrome
Chromatin remodeling
Cochlear Nerve - physiopathology
Degeneration
Deoxyribonucleic acid
DNA
DNA helicase
DNA-binding protein
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Ear
Embryos
Female
Hair cells
Hair Cells, Auditory - physiology
Haploinsufficiency
Hearing loss
Hearing protection
Humans
Life Sciences
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
Male
Mice
Multidisciplinary Sciences
Mutation
Neurons
Oxidative stress
Phenotype
Phenotypes
Science & Technology
Science & Technology - Other Topics
Sensory neurons
Stress, Physiological
title The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chromatin%20remodelling%20factor%20Chd7%20protects%20auditory%20neurons%20and%20sensory%20hair%20cells%20from%20stress-induced%20degeneration&rft.jtitle=Communications%20biology&rft.au=Ahmed,%20Mohi&rft.date=2021-11-03&rft.volume=4&rft.issue=1&rft.spage=1260&rft.epage=1260&rft.pages=1260-1260&rft.artnum=1260&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-02788-6&rft_dat=%3Cproquest_pubme%3E2593598832%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592765442&rft_id=info:pmid/34732824&rft_doaj_id=oai_doaj_org_article_a92fb875cfc14184bbec21667fb5460f&rfr_iscdi=true