The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration

Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-11, Vol.4 (1), p.1260-1260, Article 1260
Hauptverfasser: Ahmed, Mohi, Moon, Ruth, Prajapati, Ravindra Singh, James, Elysia, Basson, M. Albert, Streit, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that CHD7 controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans, CHD7 haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that CHD7 mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms. To improve our understanding of the mechanisms that protect hair cells in the ear from stress-induced death, Ahmed et al delete the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons and hair cells in mice. They observe sensorineural hearing loss and demonstrate that CHD7 controls the expression of stress pathway components, which could help to explain how CHD7 haploinsufficiency causes changes in the ear associated with CHARGE syndrome.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02788-6