Metal-Specific Response of High-Resolution ICP-MS for Proteins Binding to Gold Nanoparticles in Human Serum
Metalloproteins have many different functions such as storage and transport of proteins, enzymes, signal transduction proteins, etc. Herein, for a selection of gold nanoparticles differing in shape, size, charge, and surface modification, the binding behavior in human serum was assessed with respect...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-11, Vol.93 (45), p.14918-14922 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metalloproteins have many different functions such as storage and transport of proteins, enzymes, signal transduction proteins, etc. Herein, for a selection of gold nanoparticles differing in shape, size, charge, and surface modification, the binding behavior in human serum was assessed with respect to metal-containing proteins. Our results based on sector-field ICP-MS measurements and a simple calculation algorithm indicate the possible involvement of proteins, incorporating Cu and Fe, in the formation of the biomolecular layer around the particle surface. Given that such binding encompasses a substantial amount of copper and iron within the serum proteome (>50%) at a calculated nanoparticle dose, it may result in depleting their biological functions and should be taken into account when selecting lead candidates with an improved biocompatibility. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c04236 |