In situ surface reduction for accessing atomically dispersed platinum on carbon sheets for acidic hydrogen evolution

Exploring the simple yet well-controlled synthesis of atomically dispersed Pt catalysts is a crucial endeavour for harvesting clean hydrogen via the kinetics-favoured acidic electrochemical water splitting technique. Here we employed the use of defective carbon sheets by KOH etching as a substrate f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-11, Vol.13 (44), p.18677-18683
Hauptverfasser: Quan, Weiwei, Ruan, Xinglin, Lin, Yingbin, Luo, Jiewei, Huang, Yiyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exploring the simple yet well-controlled synthesis of atomically dispersed Pt catalysts is a crucial endeavour for harvesting clean hydrogen via the kinetics-favoured acidic electrochemical water splitting technique. Here we employed the use of defective carbon sheets by KOH etching as a substrate for the in situ surface reduction of Pt( iv ) ions to prepare atomically dispersed Pt. Physical and electrochemical characterizations reveal a strong interaction between the carbon substrate and Pt species, providing the basis for the in situ surface reduction. The atomically dispersed Pt electrocatalyst exhibited high HER performance in a sulfuric acid electrolyte, with an overpotential as low as 55 mV at a current density of 100 mA cm −a , and better catalytic durability compared to the commercial Pt/C. The mechanism study revealed that the full utilization of atomically dispersed Pt and the optimized catalyst surface may enhance the recombination of adsorbed *H via the Volmer–Tafel mechanism to produce H 2 at a high efficiency. In the light of high activity, durability, and low cost, the atomically dispersed Pt material is promising for acidic HER application.
ISSN:2040-3364
2040-3372
DOI:10.1039/d1nr05199g