Low-Cost and Convenient Microchannel Resistance Biosensing Platform by Directly Translating Biorecognition into a Current Signal
We report a low-cost and convenient microchannel resistance (MCR) biosensing platform that uses current signal to report biorecognition. The biorecognition behavior between targets and biometric molecules (antigens, antibodies, or oligonucleotides) immobilized on magnetic beads and polystyrene (PS)...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-11, Vol.93 (45), p.15049-15057 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a low-cost and convenient microchannel resistance (MCR) biosensing platform that uses current signal to report biorecognition. The biorecognition behavior between targets and biometric molecules (antigens, antibodies, or oligonucleotides) immobilized on magnetic beads and polystyrene (PS) microspheres induces a quantitative change in the unreacted PS microspheres. After magnetic separation, the unreacted PS microsphere solution is passed through the microchannel, leading to an obvious blocking effect, resulting in an increase in resistance, which can in turn be measured by monitoring the electric current. Thus, the biorecognition is directly converted into a detectable current signal without any bulky instruments or additional chemical reactions. The MCR biosensing platform is cost-effective and user-friendly with high accuracy. It can be an appropriate analysis technique for point-of-care testing in resource-poor settings. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c03006 |