Molecular stabilization of chemically exfoliated bare MnPS3 layers

Transition metal chalcogenophosphates of general formula MPX3 have attracted recent interest in the field of 2D materials due to the possibility of tuning their properties upon reaching the 2D limit. Several works address this challenge by dry mechanical exfoliation. However, only a few of them use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-11, Vol.50 (44), p.16281-16289
Hauptverfasser: Brotons-Alcázar, Isaac, Torres-Cavanillas, Ramón, Morant-Giner, Marc, Cvikl, Martin, Mañas-Valero, Samuel, ment-Aliaga, Alicia, Coronado, Eugenio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal chalcogenophosphates of general formula MPX3 have attracted recent interest in the field of 2D materials due to the possibility of tuning their properties upon reaching the 2D limit. Several works address this challenge by dry mechanical exfoliation. However, only a few of them use a scalable approach. In this work, we apply a general chemical protocol to exfoliate MnPS3. The method employs in the first step chemical intercalation and liquid phase exfoliation and in the second step the addition of molecules used as capping agents on the inorganic layers. Therefore, molecules of different nature prompt the quality of the exfoliated material and its stabilization in an aqueous solution, opening the possibility of using these functionalized layers in several fields. Here we illustrate this possibility in electrochemistry. Thus, we show that when polyethylenimine is used as the capping agent, it is possible to reach a compromise between the stability of high quality MnPS3 flakes in aqueous suspension and their optimum performance as an electrocatalytic system for HER activity.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt02536h