In situ self-assembled N-rich carbon on pristine graphene as a highly effective support and cocatalyst of short Pt nanoparticle chains for superior electrocatalytic activity toward methanol oxidation
Highly conductive cocatalysts with great promotion effects are critical for the development of pristine graphene supported Pt-based catalysts for the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). However, identification of these cocatalysts and controlled fabrication of Pt...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-11, Vol.13 (43), p.18332-18339 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly conductive cocatalysts with great promotion effects are critical for the development of pristine graphene supported Pt-based catalysts for the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). However, identification of these cocatalysts and controlled fabrication of Pt/cocatalyst/graphene hybrids with superior catalytic performance present great challenges. For the first time, pristine graphene supported N-rich carbon (NC) has been controllably fabricated
via
ionic-liquid-based
in situ
self-assembly for
in situ
growth of small and uniformly dispersed Pt NP chains to improve the MOR catalytic activity. It is discovered that the NC serves simultaneously as a linker to facilitate
in situ
nucleation of Pt, a stabilizer to restrict its growth and aggregation, and a structure-directing agent to induce the formation of Pt NP chains. The obtained nanohybrid shows a much higher forward peak current density than commercial Pt/C and most reported noncovalently functionalized carbon (NFC) supported Pt catalysts, a lower onset potential than almost all commercial Pt/C and NFC supported Pt, and greatly enhanced durability compared to graphene supported Pt NPs and commercial Pt/C. The superior catalytic performance is ascribed to the uniformly dispersed, small-diameter, and short Pt NP chains supported on highly conductive G@NC providing high ECSA and improved CO tolerance and the NC with high content of graphitic N greatly enhancing the intrinsic activity and CO tolerance of Pt and offering numerous binding sites for robustly attaching Pt. This work not only identifies and controllably fabricates a novel cocatalyst to significantly promote the catalytic activity of pristine graphene supported Pt but provides a facile and economical strategy for the controlled synthesis of high-performance integrated catalysts for the MOR in DMFCs. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d1nr05988b |