Thermal Interferometry of Anyons in Spin Liquids

Aharonov-Bohm interferometry is the most direct probe of anyonic statistics in the quantum Hall effect. The technique involves oscillations of the electric current as a function of the magnetic field and is not applicable to Kitaev spin liquids and other systems without charged quasiparticles. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-10, Vol.127 (16), p.167204-167204, Article 167204
Hauptverfasser: Wei, Zezhu, Mitrović, V. F., Feldman, D. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aharonov-Bohm interferometry is the most direct probe of anyonic statistics in the quantum Hall effect. The technique involves oscillations of the electric current as a function of the magnetic field and is not applicable to Kitaev spin liquids and other systems without charged quasiparticles. Here, we establish a novel protocol, involving heat transport, for revealing fractional statistics even in the absence of charged excitations, as is the case in quantum spin liquids. Specifically, we demonstrate that heat transport in Kitaev spin liquids through two distinct interferometer's geometries, Fabry-Perot and Mach-Zehnder, exhibit drastically different behaviors. Therefore, we propose the use of heat transport interferometry as a probe of anyonic statistics in charge insulators.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.167204