Near-Perfect Absorbing Copper Metamaterial for Solar Fuel Generation
Metamaterials are a new class of artificial materials that can achieve electromagnetic properties that do not occur naturally, and as such they can also be a new class of photocatalytic structures. We show that metal-based catalysts can achieve electromagnetic field amplification and broadband absor...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-11, Vol.21 (21), p.9124-9130 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metamaterials are a new class of artificial materials that can achieve electromagnetic properties that do not occur naturally, and as such they can also be a new class of photocatalytic structures. We show that metal-based catalysts can achieve electromagnetic field amplification and broadband absorption by decoupling optical properties from the material composition as exemplified with a ZnO/Cu metamaterial surface comprising periodically arranged nanocubes. Through refractive index engineering close to the index of air, the metamaterial exhibits near-perfect 98% absorption. The combination of plasmonics and broadband absorption elevates the weak electric field intensities across the nonplasmonic absorption range. This feedback between optical excitation and plasmonic excitation dramatically enhances light-to-dark catalytic rates by up to a factor of 181 times, compared to a 3 times photoenhancement of ZnO/Cu nanoparticles or films, and with angular invariance. These results show that metamaterial catalysts can act as a singular light harvesting device that substantially enhances photocatalysis of important reactions. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c02886 |