A study of the double pendulum using polynomial optimization

In dynamical systems governed by differential equations, a guarantee that trajectories emanating from a given set of initial conditions do not enter another given set can be obtained by constructing a barrier function that satisfies certain inequalities on the phase space. Often, these inequalities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2021-10, Vol.31 (10), p.103102-103102
Hauptverfasser: Parker, J. P., Goluskin, D., Vasil, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In dynamical systems governed by differential equations, a guarantee that trajectories emanating from a given set of initial conditions do not enter another given set can be obtained by constructing a barrier function that satisfies certain inequalities on the phase space. Often, these inequalities amount to nonnegativity of polynomials and can be enforced using sum-of-squares conditions, in which case barrier functions can be constructed computationally using convex optimization over polynomials. To study how well such computations can characterize sets of initial conditions in a chaotic system, we use the undamped double pendulum as an example and ask which stationary initial positions do not lead to flipping of the pendulum within a chosen time window. Computations give semialgebraic sets that are close inner approximations to the fractal set of all such initial positions.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0061316