A study of the double pendulum using polynomial optimization
In dynamical systems governed by differential equations, a guarantee that trajectories emanating from a given set of initial conditions do not enter another given set can be obtained by constructing a barrier function that satisfies certain inequalities on the phase space. Often, these inequalities...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2021-10, Vol.31 (10), p.103102-103102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In dynamical systems governed by differential equations, a guarantee that trajectories emanating from a given set of initial conditions do not enter another given set can be obtained by constructing a barrier function that satisfies certain inequalities on the phase space. Often, these inequalities amount to nonnegativity of polynomials and can be enforced using sum-of-squares conditions, in which case barrier functions can be constructed computationally using convex optimization over polynomials. To study how well such computations can characterize sets of initial conditions in a chaotic system, we use the undamped double pendulum as an example and ask which stationary initial positions do not lead to flipping of the pendulum within a chosen time window. Computations give semialgebraic sets that are close inner approximations to the fractal set of all such initial positions. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0061316 |