Hydroxytyrosol effectively improves the quality of pig sperm at 17 °C
Artificial insemination (AI) is a proven breeding technology which has been widely used in pig reproduction. Low temperature can cause very serious damage to pig sperm below 15 °C and the situation is even more serious at lower temperature. Besides, the preservation of pig sperm is mainly carried ou...
Gespeichert in:
Veröffentlicht in: | Theriogenology 2022-01, Vol.177, p.172-182 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artificial insemination (AI) is a proven breeding technology which has been widely used in pig reproduction. Low temperature can cause very serious damage to pig sperm below 15 °C and the situation is even more serious at lower temperature. Besides, the preservation of pig sperm is mainly carried out at 17 °C because of its outstanding performance in pig reproduction. However, the accumulation of a large amount of reactive oxygen species (ROS) during the preservation process is the main reason for the deterioration of sperm quality. In our research, by adding different concentrations of hydroxytyrosol to the diluent during the storage of pig sperm at 17 °C, we compared them with the traditional diluent to study the sperm motility, the cumulative amount of ROS, the extent of sperm membrane damage, the sperm acrosome integrity, the sperm DNA damage and the activity of antioxidant enzymes (CAT, T-AOC, SOD, GSH-PX, MDA) to evaluate the effect of hydroxytyrosol on the sperm quality during storage. We used proteomics sequencing technology to monitor difference in sperm protein between the control samples and the addition of 120 μmol/L hydroxytyrosol samples (optimum concentration) after three days storage. Ultimately, we selected the control samples and the addition of 120 μmol/L hydroxytyrosol samples to test the effect of AI. The results of our research showed that during storage of pig sperm at 17 °C, the sperm quality and antioxidant capacity of the hydroxytyrosol-treated samples significantly improved (HT 120 μmol/L) (P |
---|---|
ISSN: | 0093-691X 1879-3231 |
DOI: | 10.1016/j.theriogenology.2021.10.018 |