Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images

Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2022-04, Vol.41 (4), p.771-781
Hauptverfasser: Shi, Feng, Chen, Bojiang, Cao, Qiqi, Wei, Ying, Zhou, Qing, Zhang, Rui, Zhou, Yaojie, Yang, Wenjie, Wang, Xiang, Fan, Rongrong, Yang, Fan, Chen, Yanbo, Li, Weimin, Gao, Yaozong, Shen, Dinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distributions. In this study, we proposed a Semi-supervised Deep Transfer Learning (SDTL) framework for benign-malignant pulmonary nodule diagnosis. First, we utilize a transfer learning strategy by adopting a pre-trained classification network that is used to differentiate pulmonary nodules from nodule-like tissues. Second, since the size of samples with pathological-proven is small, an iterated feature-matching-based semi-supervised method is proposed to take advantage of a large available dataset with no pathological results. Specifically, a similarity metric function is adopted in the network semantic representation space for gradually including a small subset of samples with no pathological results to iteratively optimize the classification network. In this study, a total of 3,038 pulmonary nodules (from 2,853 subjects) with pathologically-proven benign or malignant labels and 14,735 unlabeled nodules (from 4,391 subjects) were retrospectively collected. Experimental results demonstrate that our proposed SDTL framework achieves superior diagnosis performance, with accuracy = 88.3%, AUC = 91.0% in the main dataset, and accuracy = 74.5%, AUC = 79.5% in the independent testing dataset. Furthermore, ablation study shows that the use of transfer learning provides 2% accuracy improvement, and the use of semi-supervised learning further contributes 2.9% accuracy improvement. Results implicate that our proposed classification network could provide an effective diagnostic tool for suspected lung nodules, and might have a promising application in clinical practice.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2021.3123572