Semi-infinite optimization : structure and stability of the feasible set

The problem of the minimization of a function f:R super(n) arrow right R under finitely many equality constraints and perhaps infinitely many inequality constraints gives rise to a structural analysis of the feasible set M(H, G) = (x epsilon R super(n)!H (x) = 0, G(x, y) greater than or equal to 0,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 1992-03, Vol.72 (3), p.529-552
Hauptverfasser: JONGEN, H. T, TWILT, F, WEBER, G. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of the minimization of a function f:R super(n) arrow right R under finitely many equality constraints and perhaps infinitely many inequality constraints gives rise to a structural analysis of the feasible set M(H, G) = (x epsilon R super(n)!H (x) = 0, G(x, y) greater than or equal to 0, y epsilon Y) with compact Y included in R super(r). An extension of the well-known Mangasarian-Fromovitz constraint qualification (EMFCQ) is introduced. The main result for compact M(H, G) is the equivalence of the topological stability of the feasible set M(H, G) and the validity of EMFCQ.
ISSN:0022-3239
1573-2878
DOI:10.1007/BF00939841