A Multi-Modal Gait Analysis-Based Detection System of the Risk of Depression

Currently, depression has become a common mental disorder, especially among postgraduates. It is reported that postgraduates have a higher risk of depression than the general public, and they are more sensitive to contact with others. Thus, a non-contact and effective method for detecting people at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-10, Vol.26 (10), p.4859-4868
Hauptverfasser: Shao, Wei, You, Zhiyang, Liang, Lesheng, Hu, Xiping, Li, Chengming, Wang, Wei, Hu, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, depression has become a common mental disorder, especially among postgraduates. It is reported that postgraduates have a higher risk of depression than the general public, and they are more sensitive to contact with others. Thus, a non-contact and effective method for detecting people at risk of depression becomes an urgent demand. In order to make the recognition of depression more reliable and convenient, we propose a multi-modal gait analysis-based depression detection method that combines skeleton modality and silhouette modality. Firstly, we propose a skeleton feature set to describe depression and train a Long Short-Term Memory (LSTM) model to conduct sequence strategy. Secondly, we generate Gait Energy Image (GEI) as silhouette features from RGB videos, and design two Convolutional Neural Network (CNN) models with a new loss function to extract silhouette features from front and side perspectives. Then, we construct a multi-modal fusion model consisting of fusing silhouettes from the front and side views at the feature level and the classification results of different modalities at the decision level. The proposed multi-modal model achieved accuracy at 85.45% in the dataset consisting of 200 postgraduate students (including 86 depressive ones), 5.17% higher than the best single-mode model. The multi-modal method also shows improved generalization by reducing the gender differences. Furthermore, we design a vivid 3D visualization of the gait skeletons, and our results imply that gait is a potent biometric for depression detection.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2021.3122299