Why halides enhance heterogeneous metal ion charge transfer reactions
The reaction kinetics of many metal redox couples on electrode surfaces are enhanced in the presence of halides ( i.e. , Cl − , Br − , I − ). Using first-principles metadynamics simulations, we show a correlation between calculated desorption barriers of V 3+ -anion complexes bound to graphite via a...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2021-10, Vol.12 (38), p.1274-1271 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The reaction kinetics of many metal redox couples on electrode surfaces are enhanced in the presence of halides (
i.e.
, Cl
−
, Br
−
, I
−
). Using first-principles metadynamics simulations, we show a correlation between calculated desorption barriers of V
3+
-anion complexes bound to graphite
via
an inner-sphere anion bridge and experimental V
2+
/V
3+
kinetic measurements on edge plane pyrolytic graphite in H
2
SO
4
, HCl, and HI. We extend this analysis to V
2+
/V
3+
, Cr
2+
/Cr
3+
, and Cd
0
/Cd
2+
reactions on a mercury electrode and demonstrate that reported kinetics in acidic electrolytes for these redox couples also correlate with the predicted desorption barriers of metal-anion complexes. Therefore, the desorption barrier of the metal-anion surface intermediate is a descriptor of kinetics for many metal redox couple/electrode combinations in the presence of halides. Knowledge of the metal-anion surface intermediates can guide the design of electrolytes and electrocatalysts with faster kinetics for redox reactions of relevance to energy and environmental applications.
Halide-induced rate enhancements are correlated with the desorption barriers of aqueous metal-anion complexes on electrodes, which can guide electrode and electrolyte selection to enhance redox kinetics of metal ion charge transfer reactions. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/d1sc03642d |