Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance
A high-yield and straightforward method is proposed to obtain an electromagnetic interference (EMI) shielding film based on multilayered Ti3C2Tx (m-Ti3C2Tx). Holocellulose nanofibrils modified by sulfamic acid (SHCNF) with unique “core-shell” structure can act as a dispersant and a binder to assist...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2021-11, Vol.274, p.118652-118652, Article 118652 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high-yield and straightforward method is proposed to obtain an electromagnetic interference (EMI) shielding film based on multilayered Ti3C2Tx (m-Ti3C2Tx). Holocellulose nanofibrils modified by sulfamic acid (SHCNF) with unique “core-shell” structure can act as a dispersant and a binder to assist in exfoliating m-Ti3C2Tx into delaminated-Ti3C2Tx (d-Ti3C2Tx) and fabricate flexible Ti3C2Tx/SHCNF composite films with a high-yield value. The “brick-and-mortar” composite films exhibit a superior electromagnetic interference (EMI) shielding effectiveness (SE) of 45.02 dB with an ultrathin thickness of 40 μm at the 12.4 GHz. Moreover, these flexible and strong integrated Ti3C2Tx/SHCNF composite films also display excellent specific EMI SE of SSE/t (4437 dB cm2 g−1) and high EMI shielding efficiency (99.996%). Therefore, the SHCNF-assisted method provides a cost-effective approach to fabricate a strong and flexible MXene-based nanocomposite films toward EMI shielding application.
[Display omitted]
•Holocellulose nanofibrils assisted in exfoliating multilayered Ti3C2Tx.•The Ti3C2Tx/SHCNF film exhibited superior mechanical properties.•The film presented excellent specific EMI shielding efficiency. |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2021.118652 |