Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances

Magnon-mediated angular-momentum flow in antiferromagnets may become a design element for energy-efficient, low-dissipation and high-speed spintronic devices 1 , 2 . Owing to their low energy dissipation, antiferromagnetic magnons can propagate over micrometre distances 3 . However, direct observati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2021-12, Vol.16 (12), p.1337-1341
Hauptverfasser: Lee, Kyusup, Lee, Dong-Kyu, Yang, Dongsheng, Mishra, Rahul, Kim, Dong-Jun, Liu, Sheng, Xiong, Qihua, Kim, Se Kwon, Lee, Kyung-Jin, Yang, Hyunsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnon-mediated angular-momentum flow in antiferromagnets may become a design element for energy-efficient, low-dissipation and high-speed spintronic devices 1 , 2 . Owing to their low energy dissipation, antiferromagnetic magnons can propagate over micrometre distances 3 . However, direct observation of their high-speed propagation has been elusive due to the lack of sufficiently fast probes 2 . Here we measure the antiferromagnetic magnon propagation in the time domain at the nanoscale (≤50 nm) with optical-driven terahertz emission. In non-magnetic-Bi 2 Te 3 /antiferromagnetic-insulator-NiO/ferromagnetic-Co trilayers, we observe a magnon velocity of ~650 km s –1 in the NiO layer. This velocity far exceeds previous estimations of the maximum magnon group velocity of ~40 km s –1 , which were based on the magnon dispersion measurements of NiO using inelastic neutron scattering 4 , 5 . Our theory suggests that for magnon propagation at the nanoscale, a finite damping makes the dispersion anomalous for small magnon wavenumbers and yields a superluminal-like magnon velocity. Given the generality of finite dissipation in materials, our results strengthen the prospects of ultrafast nanodevices using antiferromagnetic magnons. Magnon-mediated angular-momentum flow in antiferromagnets may become a design element for energy-efficient, low-dissipation and high-speed spintronic devices. Here, terahertz emission measurements in magnetic multilayers unveil a superluminal-like magnon velocity of ~650 km s –1 in the antiferromagnetic insulator NiO at nanoscale distances.
ISSN:1748-3387
1748-3395
DOI:10.1038/s41565-021-00983-4