Schroedinger's radial equation - Solution by extrapolation

A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 1992-05, Vol.47 (5, Ma), p.391-399
Hauptverfasser: Goorvitch, D., Galant, D. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 5, Ma
container_start_page 391
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 47
creator Goorvitch, D.
Galant, D. C.
description A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial guesses for the term values are obviated, and implementation of the algorithm is straightforward. The method is both less sensitive to round-off error, and faster than conventional methods for equivalent accuracy. These advantages are illustrated through the solution of Schroedinger's equation for a Morse potential function suited for HCl and a numerically derived Rydberg-Klein-Rees potential function for the X 1Sigma(+) state of CO.
format Article
fullrecord <record><control><sourceid>proquest_nasa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_25860392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25860392</sourcerecordid><originalsourceid>FETCH-LOGICAL-n522-e40c04f9cdb5329d2073ae780bc7626f7a3fb2a7ef02b25ef82236dbf00c2a623</originalsourceid><addsrcrecordid>eNotjs1OwzAQhH0AqaX0DTjkBKdI23XiJNxQxZ9UiUN7j9b2GoKM3dqJBG9PaTnNSPNpZi7EHACxrKCRM3GV8ycASLlSc3G_NR8psh3CO6e7XCSyA_mCDxONQwxFWWyjn05W_xT8PSbaR3_KrsWlI595-a8LsXt63K1fys3b8-v6YVOG-rjJFRioXGesriV2Fo8fiJsWtGkUKteQdBqpYQeosWbXIkpltQMwSArlQtyea_cpHibOY_81ZMPeU-A45R7rVoHs_sCbMxgoUx_GlPtV1yGAQmhR_gKYlkv2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25860392</pqid></control><display><type>article</type><title>Schroedinger's radial equation - Solution by extrapolation</title><source>Access via ScienceDirect (Elsevier)</source><source>NASA Technical Reports Server</source><creator>Goorvitch, D. ; Galant, D. C.</creator><creatorcontrib>Goorvitch, D. ; Galant, D. C.</creatorcontrib><description>A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial guesses for the term values are obviated, and implementation of the algorithm is straightforward. The method is both less sensitive to round-off error, and faster than conventional methods for equivalent accuracy. These advantages are illustrated through the solution of Schroedinger's equation for a Morse potential function suited for HCl and a numerically derived Rydberg-Klein-Rees potential function for the X 1Sigma(+) state of CO.</description><identifier>ISSN: 0022-4073</identifier><language>eng</language><publisher>Legacy CDMS</publisher><subject>Atomic And Molecular Physics</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 1992-05, Vol.47 (5, Ma), p.391-399</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786</link.rule.ids></links><search><creatorcontrib>Goorvitch, D.</creatorcontrib><creatorcontrib>Galant, D. C.</creatorcontrib><title>Schroedinger's radial equation - Solution by extrapolation</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial guesses for the term values are obviated, and implementation of the algorithm is straightforward. The method is both less sensitive to round-off error, and faster than conventional methods for equivalent accuracy. These advantages are illustrated through the solution of Schroedinger's equation for a Morse potential function suited for HCl and a numerically derived Rydberg-Klein-Rees potential function for the X 1Sigma(+) state of CO.</description><subject>Atomic And Molecular Physics</subject><issn>0022-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNotjs1OwzAQhH0AqaX0DTjkBKdI23XiJNxQxZ9UiUN7j9b2GoKM3dqJBG9PaTnNSPNpZi7EHACxrKCRM3GV8ycASLlSc3G_NR8psh3CO6e7XCSyA_mCDxONQwxFWWyjn05W_xT8PSbaR3_KrsWlI595-a8LsXt63K1fys3b8-v6YVOG-rjJFRioXGesriV2Fo8fiJsWtGkUKteQdBqpYQeosWbXIkpltQMwSArlQtyea_cpHibOY_81ZMPeU-A45R7rVoHs_sCbMxgoUx_GlPtV1yGAQmhR_gKYlkv2</recordid><startdate>19920501</startdate><enddate>19920501</enddate><creator>Goorvitch, D.</creator><creator>Galant, D. C.</creator><scope>CYE</scope><scope>CYI</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19920501</creationdate><title>Schroedinger's radial equation - Solution by extrapolation</title><author>Goorvitch, D. ; Galant, D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n522-e40c04f9cdb5329d2073ae780bc7626f7a3fb2a7ef02b25ef82236dbf00c2a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Atomic And Molecular Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goorvitch, D.</creatorcontrib><creatorcontrib>Galant, D. C.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goorvitch, D.</au><au>Galant, D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schroedinger's radial equation - Solution by extrapolation</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>1992-05-01</date><risdate>1992</risdate><volume>47</volume><issue>5, Ma</issue><spage>391</spage><epage>399</epage><pages>391-399</pages><issn>0022-4073</issn><abstract>A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial guesses for the term values are obviated, and implementation of the algorithm is straightforward. The method is both less sensitive to round-off error, and faster than conventional methods for equivalent accuracy. These advantages are illustrated through the solution of Schroedinger's equation for a Morse potential function suited for HCl and a numerically derived Rydberg-Klein-Rees potential function for the X 1Sigma(+) state of CO.</abstract><cop>Legacy CDMS</cop><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 1992-05, Vol.47 (5, Ma), p.391-399
issn 0022-4073
language eng
recordid cdi_proquest_miscellaneous_25860392
source Access via ScienceDirect (Elsevier); NASA Technical Reports Server
subjects Atomic And Molecular Physics
title Schroedinger's radial equation - Solution by extrapolation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nasa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schroedinger's%20radial%20equation%20-%20Solution%20by%20extrapolation&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Goorvitch,%20D.&rft.date=1992-05-01&rft.volume=47&rft.issue=5,%20Ma&rft.spage=391&rft.epage=399&rft.pages=391-399&rft.issn=0022-4073&rft_id=info:doi/&rft_dat=%3Cproquest_nasa_%3E25860392%3C/proquest_nasa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25860392&rft_id=info:pmid/&rfr_iscdi=true