Schroedinger's radial equation - Solution by extrapolation
A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial...
Gespeichert in:
Veröffentlicht in: | Journal of quantitative spectroscopy & radiative transfer 1992-05, Vol.47 (5, Ma), p.391-399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial guesses for the term values are obviated, and implementation of the algorithm is straightforward. The method is both less sensitive to round-off error, and faster than conventional methods for equivalent accuracy. These advantages are illustrated through the solution of Schroedinger's equation for a Morse potential function suited for HCl and a numerically derived Rydberg-Klein-Rees potential function for the X 1Sigma(+) state of CO. |
---|---|
ISSN: | 0022-4073 |