Local perturbations of periodic systems. Chemisorption and point defects by GoGreenGo

We present a software package GoGreenGo—an overlay aimed to model local perturbations of periodic systems due to either chemisorption or point defects. The electronic structure of an ideal crystal is obtained by worldwide‐distributed standard quantum physics/chemistry codes, and then processed by va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2021-12, Vol.42 (32), p.2352-2368
Hauptverfasser: Popov, Ilya V., Kushnir, Timofei S., Tchougréeff, Andrei L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a software package GoGreenGo—an overlay aimed to model local perturbations of periodic systems due to either chemisorption or point defects. The electronic structure of an ideal crystal is obtained by worldwide‐distributed standard quantum physics/chemistry codes, and then processed by various tools performing projection to atomic orbital basis sets. Starting from this, the perturbation is addressed by GoGreenGo with use of the Green's functions formalism, which allows evaluating its effect on the electronic structure, density matrix, and energy of the system. In the present contribution, the main accent is made on processes of chemical nature, such as chemisorption or doping. We address a general theory and its computational implementation supported by a series of test calculations of the electronic structure perturbations for benchmark model solids: simple, face‐centered, and body‐centered cubium systems. In addition, more realistic problems of local perturbations in graphene lattice, such as lattice substitution, vacancy, and “on‐top” chemisorption, are considered. Point defects in crystals form a wide class of processes being of great importance in solid‐state chemistry. Only by considering surface chemistry one can propose a numerous examples ‐ from formation of isolated surface defects to single particle chemisorption and elementary reactions on catalysts' surfaces. Theoretical investigation of these processes, aiming to understand their mechanisms from the electronic structure perspective, presents one of many important branches of solid‐state chemistry deserving close attention. In this work we present a new software package GoGreenGo specifically designed to perform computationally effective quantum chemical calculations of local processes in solids and to provide results in “chemical” terms.
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.26766