Aberrant large-scale brain modules in deficit and non-deficit schizophrenia

Schizophrenia is a heterogenous psychiatric disease, and deficit schizophrenia (DS) is a clinical subgroup with primary and enduring negative symptoms. Although previous neuroimaging studies have identified functional connectome alterations in schizophrenia, the modular organizations in DS and nonde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in neuro-psychopharmacology & biological psychiatry 2022-03, Vol.113, p.110461-110461, Article 110461
Hauptverfasser: Fan, Linlin, Yu, Miao, Pinkham, Amy, Zhu, Yiyi, Tang, Xiaowei, Wang, Xiang, Zhang, Xiaobin, Ma, Junji, Zhang, Jinbo, Zhang, Xiangrong, Dai, Zhengjia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Schizophrenia is a heterogenous psychiatric disease, and deficit schizophrenia (DS) is a clinical subgroup with primary and enduring negative symptoms. Although previous neuroimaging studies have identified functional connectome alterations in schizophrenia, the modular organizations in DS and nondeficit schizophrenia (NDS) remain poorly understood. Therefore, this study aimed to investigate the modular-level alterations in DS patients compared with the NDS and healthy control (HC) groups. A previously collected dataset was re-analyzed, in which 74 chronic male schizophrenia patients (33 DS and 41 NDS) and 40 HC underwent resting-state functional magnetic resonance imaging with eyes closed in a Siemens 3 T scanner (scanning duration = 8 min). Modular- (intramodule and intermodule connectivity) and nodal- [normalized within-module degree (Zi) and participation coefficient (PCi)] level graph theory properties were computed and compared among the three groups. Receiver operating characteristic curve (ROC) analyses were performed to examine the classification ability of these measures, and partial correlations were conducted between network measures and symptom severity. Validation analyses on head motion, network sparsity, and parcellation scheme were also performed. Both schizophrenia subgroups showed decreased intramodule connectivity in salience network (SN), somatosensory-motor network (SMN), and visual network (VN), and increased intermodule connectivity in SMN-default mode network (DMN) and SMN-frontoparietal network (FPN). Compared with NDS patients, DS patients showed weaker intramodule connectivity in SN and stronger intermodule connectivity in SMN-FPN and SMN-VN. At the nodal level, the schizophrenia-related alterations were distributed in SN, SMN, VN, and DMN, and 7 DS-specific nodal alterations were identified. Intramodule connectivity of SN, intermodule connectivity of SMN-VN, and Zi of left precuneus successfully distinguished the three groups. Partial correlational analyses revealed that these measures were related to negative symptoms, general psychiatric symptoms, and neurocognitive function. Our findings suggest that functional connectomes, especially SN, SMN, and VN, may capture the distinct and common disruptions of DS and NDS. These findings may help to understand the neuropathology of negative symptoms of schizophrenia and inform targets for treating different schizophrenia subtypes. •Deficit (DS) and nondeficit schizophrenia (NDS) showe
ISSN:0278-5846
1878-4216
DOI:10.1016/j.pnpbp.2021.110461