Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer

In this study, we aimed to investigate of antitumor efficiency of titanium dioxide mediated photodynamic (PDT), sonodynamic (SDT), and sonophotodynamic (SPDT) therapies with a possible mechanism against the PC3 prostate cancer cell line. SPDT is a new approach to cancer treatment that combines sonod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 2021-12, Vol.225, p.112333-112333, Article 112333
Hauptverfasser: Aksel, Mehran, Kesmez, Ömer, Yavaş, Adem, Bilgin, Mehmet Dinçer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we aimed to investigate of antitumor efficiency of titanium dioxide mediated photodynamic (PDT), sonodynamic (SDT), and sonophotodynamic (SPDT) therapies with a possible mechanism against the PC3 prostate cancer cell line. SPDT is a new approach to cancer treatment that combines sonodynamic and photodynamic therapies. On the other hand, Titanium dioxide (TiO2) has been used in many applications in pharmaceutical products and cosmetics, industrial products, and medicines. TiO2 nanoparticles will be useful for the treatment of cancer with PDT and SDT as the sensitizers in medicine. In this study, TiO2 nanoparticles were used for an in vitro comparison between the PDT, SDT, SPDT damages on prostate cancer cell lines. For this purpose, the cells were incubated in RPMI-1640 media with various concentrations of TiO2 and subjected to 0,5 W/cm2 ultrasound and/or 0,5 mJ/cm2 light irradiation. The prostate cancer cells were irradiated with light and exposed with the US and both for SPDT in the presence and/or absence of TiO2. Cell viability was measured using by MTT test after treatments. Investigate to apoptosis mechanism, Propidium iodide and Hoechst 33342 staining were used and the results showed that apoptotic cell bodies were increased compared with other groups. According to western blot analyses, caspase-3, caspase-8, PARP, and Bax levels were decreased after treatments, whereas the expression levels of caspase-9 were increased. Biochemical results showed that after treatments MDA levels were increased while SOD, CAT, GSH levels were decreased. In conclusion, TiO2-mediated SPDT may provide a promising approach for prostate cancer therapy and might play a key role in the apoptotic mechanism of these treatments. •Anti-cancer and possible mechanism of TiO2-mediated sonophotodynamic therapy was analyzed on PC3 cancer cells.•TiO2-mediated sonophotodynamic therapy decreased cell viability nearly 87% of PC3 cells.•TiO2-mediated sonophotodynamic therapy destroyed prostate cancer cell via ROS production and intrinsic apoptosis pathway.
ISSN:1011-1344
1873-2682
DOI:10.1016/j.jphotobiol.2021.112333