One-dimensional necklace-like assemblies of inorganic nanoparticles: Recent advances in design, preparation and applications
One-dimensional (1D) necklace-like assembly of inorganic nanoparticles exhibits unique collective properties, which are critical to open up new and remarkable opportunities in the field of nanotechnology. This review focuses on the recent advances in the production of these types of assemblies emplo...
Gespeichert in:
Veröffentlicht in: | Advances in colloid and interface science 2021-11, Vol.297, p.102543-102543, Article 102543 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One-dimensional (1D) necklace-like assembly of inorganic nanoparticles exhibits unique collective properties, which are critical to open up new and remarkable opportunities in the field of nanotechnology. This review focuses on the recent advances in the production of these types of assemblies employing two strategies: colloidal synthesis and self-assembly procedures. After a brief description of the forces guiding nanoparticles towards the assembly, the main features of both strategies are discussed. Examples of approaches, typically involved in colloidal synthesis, are highlighted. The peculiar properties of 1D nanostructures are strictly associated with the nanoparticle arrangement in the form of highly ordered assemblies, which are attained during the synthesis both in the solution and using a template, as well as under the action of an external force. The various 1D necklace-like structures, created through nanoparticle self-assembly, demonstrate aligned, oriented nanoparticle organization. Diverse nature, size and shape of preformed particles as building blocks, along with utilizing different linkers, templates or external field lead to fabrication of 1D chain nanostructures with properties responsible for their wide applications. The unique structure−property relationship, both in colloidal synthesis, and self-assembly, offers broad spectrum of 1D necklace-like nanostructure implementations, illustrated by their use in photonics, electronics, electrocatalysis, magnetics.
[Display omitted]
•The main interaction forces driving the rational design of 1D nanostructures.•Features of colloidal synthesis and self-assembly in 1D nanostructure production.•Colloidal synthesis in solution, with template or under external forces is considered.•Self-assembly can direct 1D using various linkers, templates, and external forces.•Applications in photonics, electronics, electrocatalysis, magnetics. |
---|---|
ISSN: | 0001-8686 1873-3727 |
DOI: | 10.1016/j.cis.2021.102543 |