Easily Fabricated Low-Energy Consumption Joule-Heated Superhydrophobic Foam for Fast Cleanup of Viscous Crude Oil Spills

Effective cleanup of viscous crude oil spills remains a persistent and crippling challenge. Herein, this work presents a Joule-heated superhydrophobic flower-like Cu8(PO3OH)2(PO4)4·7H2O-coated copper foam (SHB-CF@CP) for rapid cleanup of viscous crude oil spills via a facile strategy. The SHB-CF@CP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-11, Vol.13 (43), p.51652-51660
Hauptverfasser: Li, Zhangdi, Tian, Qiong, Xu, Jicheng, Sun, Shouzhen, Cheng, Ying, Qiu, Fengxian, Zhang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effective cleanup of viscous crude oil spills remains a persistent and crippling challenge. Herein, this work presents a Joule-heated superhydrophobic flower-like Cu8(PO3OH)2(PO4)4·7H2O-coated copper foam (SHB-CF@CP) for rapid cleanup of viscous crude oil spills via a facile strategy. The SHB-CF@CP shows outstanding water repellency and excellent stability of hydrophobicity in harsh environments. Due to the high electrical conductivity and thermal conductivity, it requires lower power energy consumption (less than 1 V of voltage input) to raise the temperature significantly, which dramatically reduces the viscosity of crude oil (from ∼2 × 105 to ∼60 mPa s) and then increases the oil absorption rate, effectively avoiding the poor mobility and ineffective absorption of viscous crude oil. Notably, the SHB-CF@CP can achieve continuous and quick cleanup of crude oil under in situ pumping force. The high-performance Joule-heated SHB-CF@CP sorbent with a strong porous skeleton, corrosion resistance, and low predicted operational costs holds a promise of promoting its practical applications in the cleanup of intractable and large-area viscous oil spills.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c13574