Gravitational-Wave Energy Flux for Compact Binaries through Second Order in the Mass Ratio

Within the framework of self-force theory, we compute the gravitational-wave energy flux through second order in the mass ratio for compact binaries in quasicircular orbits. Our results are consistent with post-Newtonian calculations in the weak field, and they agree remarkably well with numerical-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-10, Vol.127 (15), p.1-151102, Article 151102
Hauptverfasser: Warburton, Niels, Pound, Adam, Wardell, Barry, Miller, Jeremy, Durkan, Leanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the framework of self-force theory, we compute the gravitational-wave energy flux through second order in the mass ratio for compact binaries in quasicircular orbits. Our results are consistent with post-Newtonian calculations in the weak field, and they agree remarkably well with numerical-relativity simulations of comparable-mass binaries in the strong field. We also find good agreement for binaries with a spinning secondary or a slowly spinning primary. Our results are key for accurately modeling extreme-mass-ratio inspirals and will be useful in modeling intermediate-mass-ratio systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.151102