LaTaON2 Mesoporous Single Crystals for Efficient Photocatalytic Water Oxidation and Z‑Scheme Overall Water Splitting

LaTaON2 porous single crystals (PSCs), integrating structural coherence and porous microstructures, will warrant promising photocatalytic performance. The absence of grain boundaries in PSCs ensures rapid photocarrier transportation from bulk to the surface, thereby mitigating photocarriers’ recombi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-11, Vol.15 (11), p.18153-18162
Hauptverfasser: Chang, Shufang, Yu, Jinxing, Wang, Ran, Fu, Qingyang, Xu, Xiaoxiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LaTaON2 porous single crystals (PSCs), integrating structural coherence and porous microstructures, will warrant promising photocatalytic performance. The absence of grain boundaries in PSCs ensures rapid photocarrier transportation from bulk to the surface, thereby mitigating photocarriers’ recombination. Porous microstructures not only provide ample reachable surface to host photochemical reactions but also reinforce photon-matter interactions by additional photon reflection/scattering. Here, we have synthesized LaTaON2 PSCs via a topotactic route and show significantly improved photocatalytic performance. Efficient water oxidation into O2 has been realized by LaTaON2 PSCs with an apparent quantum efficiency as high as 5.7% at 420 ± 20 nm. Stable overall water splitting into stoichiometric H2 and O2 has also been achieved in a Z-scheme setup using LaTaON2 PSCs as the O2 evolution photocatalyst. These results not only prove that PSCs facilitate photocarrier migrations, which in turn deliver exceptional photocatalytic performance, but also imply that PSCs are useful to reinvigorate conventional semiconductor photocatalysts toward efficient solar energy conversions.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c06871