Distinct ultrafast carrier dynamics of α-In2Se3 and β-In2Se3: contributions from band filling and bandgap renormalization

As an intrigued layered 2D semiconductor material, indium selenide (In2Se3) has attracted widespread attention due to its excellent properties. So far, the carrier dynamics of α-In2Se3 and β-In2Se3 are still lacking a comprehensive understanding, which is essential to enhancing the performance of In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-11, Vol.23 (42), p.24313-24318
Hauptverfasser: Meng, Shengjie, Wang, Jian, Shi, Hongyan, Sun, Xiudong, Gao, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As an intrigued layered 2D semiconductor material, indium selenide (In2Se3) has attracted widespread attention due to its excellent properties. So far, the carrier dynamics of α-In2Se3 and β-In2Se3 are still lacking a comprehensive understanding, which is essential to enhancing the performance of In2Se3-based optoelectronic devices. In this study, we explored the ultrafast carrier dynamics in thin α-In2Se3 and β-In2Se3via transient absorption microscopy. For α-In2Se3 with a narrower bandgap, band filling and bandgap renormalization jointly governed the time evolution of the differential reflectivity signal, whose magnitude and sign at different delays were determined by the weights between the band filling and bandgap renormalization, depending on the carrier density. For β-In2Se3, whose bandgap is close to the probe photon energy, only positive differential reflectivity was detected, which was attributed to strong band filling effect. In both materials, the lifetime decreased and the relative amplitude of the Auger process increased, when the pump fluence was increased. These findings could provide further insights into the optical and optoelectronic properties of In2Se3-based devices.
ISSN:1463-9076
1463-9084
DOI:10.1039/d1cp03874e