Identifying chemolithotrophic and pathogenic-related gene expression within suspended sediment flocs in freshwater environments: A metatranscriptomic assessment
The introduction and proliferation of pathogenic organisms in aquatic systems is a serious global issue that consequently leads to economic, financial, and health concerns. Health and safety related to recreational water use is typically monitored through water quality assessments that are outdated...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2022-02, Vol.807 (Pt 3), p.150996-150996, Article 150996 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The introduction and proliferation of pathogenic organisms in aquatic systems is a serious global issue that consequently leads to economic, financial, and health concerns. Health and safety related to recreational water use is typically monitored through water quality assessments that are outdated and can be misleading. These traditional methods focus on broad taxa groups, provide no insight into the active community or source of contamination, and the sediment compartments (bed and suspended) are often overlooked. To bridge this knowledge gap, our study aimed to 1) examine the metatranscriptome of the microbial community associated with suspended sediment (SS) in freshwater systems; 2) explore the influence of SS in tributaries to the littoral zone of the receiving lake; and 3) compare the SS fraction with previously reported nearshore bed sediment data. Samples were collected seasonally from Lake St. Clair and Lake Erie. Beaches in this region are influenced by both agriculture runoff and continued urban expansion. Results show that both adjacent tributary and beach SS have similar microbial functional diversity and are strongly correlated by site and season. We identified expression of transcripts encoding sequences with similarities to genes involved in nine bacterial infectious disease pathways, including legionellosis (sdhA) and Vibrio cholerae pathogenesis. According to MG-RAST gene categories, lake samples typically showed higher overall expression (p |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.150996 |