Hybrid Vesicles Based on Autologous Tumor Cell Membrane and Bacterial Outer Membrane To Enhance Innate Immune Response and Personalized Tumor Immunotherapy

Tumor heterogeneity, often leading to metastasis, limits the development of tumor therapy. Personalized therapy is promising to address tumor heterogeneity. Here, a vesicle system was designed to enhance innate immune response and amplify personalized immunotherapy. Briefly, the bacterial outer memb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-10, Vol.21 (20), p.8609-8618
Hauptverfasser: Zou, Mei-Zhen, Li, Zi-Hao, Bai, Xue-Feng, Liu, Chuan-Jun, Zhang, Xian-Zheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor heterogeneity, often leading to metastasis, limits the development of tumor therapy. Personalized therapy is promising to address tumor heterogeneity. Here, a vesicle system was designed to enhance innate immune response and amplify personalized immunotherapy. Briefly, the bacterial outer membrane vesicle (OMV) was hybridized with the cell membrane originated from the tumor (mT) to form new functional vesicles (mTOMV). In vitro experiments revealed that the mTOMV strengthened the activation of innate immune cells and increased the specific lysis ability of T cells in homogeneous tumors. In vivo experiments showed that the mTOMV effectively accumulated in inguinal lymph nodes, then inhibited lung metastasis. Besides, the mTOMV evoked adaptive immune response in homologous tumor rather than the heterogeneous tumor, reversibly demonstrating the effects of personalized immunotherapy. The functions to inhibit tumor growth and metastasis accompanying good biocompatibility and simple preparation procedure of mTOMV provide their great potential for clinical applications.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c02482