Fitness Level‐ and Sex-Related Differences in Macrovascular and Microvascular Responses during Reactive Hyperemia
Reactive hyperemia (RH) is widely used for the investigation of macrovascular (flow-mediated dilation, or FMD) and microvascular (near-infrared spectroscopy-vascular occlusion test, or NIRS-VOT) function. Mixed results have been reported on fitness level- and sex-related differences in FMD outcomes,...
Gespeichert in:
Veröffentlicht in: | Medicine and science in sports and exercise 2022-03, Vol.54 (3), p.497-506 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reactive hyperemia (RH) is widely used for the investigation of macrovascular (flow-mediated dilation, or FMD) and microvascular (near-infrared spectroscopy-vascular occlusion test, or NIRS-VOT) function. Mixed results have been reported on fitness level- and sex-related differences in FMD outcomes, and little is known about microvascular differences in untrained and chronically trained males and females.
Fifteen chronically trained (CT: 8 males, 7 females) and 16 untrained (UT: 8 males, 8 females) individuals participated in this study. Aerobic fitness (V˙O2max) was assessed during a cycling incremental exercise test to volitional exhaustion. FMD and NIRS-VOT were performed simultaneously on the lower limb investigating superficial femoral artery and vastus lateralis muscle, respectively.
%FMD was not different between groups (CT males, 4.62 ± 1.42; CT females, 4.15 ± 2.23; UT males, 5.10 ± 2.53; CT females, 3.20 ± 1.67). Peak blood flow showed greater values in CT versus UT (P ≤ 0.0001) and males versus females (P = 0.032). RH blood flow area under the curve was greater in CT versus UT (P = 0.001). At the microvascular level, desaturation and reperfusion rates were faster in CT versus UT (P = 0.018 and P = 0.013) and males versus females (P = 0.011 and P = 0.005). V˙O2max was significantly correlated with reperfusion rate (P = 0.0005) but not with %FMD.
Whereas NIRS-VOT outcomes identified fitness- and sex-related differences in vascular responses, %FMD did not. However, when RH-related outcomes from the FMD analysis were considered, fitness- and/or sex-related differences were detected. These data highlight the importance of integrating FMD and NIRS-VOT outcomes for a more comprehensive evaluation of vascular function. |
---|---|
ISSN: | 0195-9131 1530-0315 |
DOI: | 10.1249/MSS.0000000000002806 |