Proving unsatisfiability for problems with constant cubic sparsity

This paper presents a perspective on a previously studied heuristic tree search algorithm for the NP-complete “3SAT” satisfiability problem, which synthesizes results by Brown, Franco, Purdom, and others. It is shown that when an a priori calculation indicates a random, nontrivial 3SAT formula is ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 1992, Vol.57 (1), p.125-137
1. Verfasser: Jackson, Philip C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a perspective on a previously studied heuristic tree search algorithm for the NP-complete “3SAT” satisfiability problem, which synthesizes results by Brown, Franco, Purdom, and others. It is shown that when an a priori calculation indicates a random, nontrivial 3SAT formula is very likely unsatisfiable, then the heuristic algorithm is expected to prove unsatisfiability in a search tree with size essentially independent of the problem size, and bounded by a constant that depends only on the ratio of the number of clauses to the cube of the number of variables.
ISSN:0004-3702
1872-7921
DOI:10.1016/0004-3702(92)90107-9