BERT-Kcr: prediction of lysine crotonylation sites by a transfer learning method with pre-trained BERT models

Abstract Motivation As one of the most important post-translational modifications (PTMs), protein lysine crotonylation (Kcr) has attracted wide attention, which involves in important physiological activities, such as cell differentiation and metabolism. However, experimental methods are expensive an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2022-01, Vol.38 (3), p.648-654
Hauptverfasser: Qiao, Yanhua, Zhu, Xiaolei, Gong, Haipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation As one of the most important post-translational modifications (PTMs), protein lysine crotonylation (Kcr) has attracted wide attention, which involves in important physiological activities, such as cell differentiation and metabolism. However, experimental methods are expensive and time-consuming for Kcr identification. Instead, computational methods can predict Kcr sites in silico with high efficiency and low cost. Results In this study, we proposed a novel predictor, BERT-Kcr, for protein Kcr sites prediction, which was developed by using a transfer learning method with pre-trained bidirectional encoder representations from transformers (BERT) models. These models were originally used for natural language processing (NLP) tasks, such as sentence classification. Here, we transferred each amino acid into a word as the input information to the pre-trained BERT model. The features encoded by BERT were extracted and then fed to a BiLSTM network to build our final model. Compared with the models built by other machine learning and deep learning classifiers, BERT-Kcr achieved the best performance with AUROC of 0.983 for 10-fold cross validation. Further evaluation on the independent test set indicates that BERT-Kcr outperforms the state-of-the-art model Deep-Kcr with an improvement of about 5% for AUROC. The results of our experiment indicate that the direct use of sequence information and advanced pre-trained models of NLP could be an effective way for identifying PTM sites of proteins. Availability and implementation The BERT-Kcr model is publicly available on http://zhulab.org.cn/BERT-Kcr_models/. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/btab712