Mussel-Inspired Ag NPs Immobilized on Melamine Sponge for Reduction of 4‑Nitrophenol, Antibacterial Applications and Its Superhydrophobic Derivative for Oil–Water Separation

A functional material integrated with a variety of functions is highly desired in wastewater treatment. In this research, a mussel-inspired method of immobilizing silver nanoparticles on the skeleton of a melamine sponge is proposed and applied for water remediation. Ag NPs were reduced in situ and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (42), p.50539-50551
Hauptverfasser: Chen, Teng, Liu, Zhiyu, Zhang, Kai, Su, Bolin, Hu, Zhenhua, Wan, Hongri, Chen, Yan, Fu, Xinkai, Gao, Zhaojian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A functional material integrated with a variety of functions is highly desired in wastewater treatment. In this research, a mussel-inspired method of immobilizing silver nanoparticles on the skeleton of a melamine sponge is proposed and applied for water remediation. Ag NPs were reduced in situ and grown on a polydopamine-modified melamine sponge. The catalytic reduction of 4-nitrophenol (4-NP) in the presence of the obtained MS-PDA-Ag was evaluated, and the results demonstrated that the MS-PDA-Ag presented high catalytic reduction activity. In addition, the monolithic MS-PDA-Ag presents excellent reusability with no remarkable decrease in catalytic efficiency after multiple reuses. Owing to the immobilized Ag NPs, the MS-PDA-Ag can also effectively inhibit the growth of bacteria against both gram-positive and gram-negative species, making it possible for bacteria elimination in polluted water. To further explore the possibility of utilizing the MS-PDA-Ag for versatile applications, a superhydrophobic derivative (S-MS-PDA-Ag) was prepared by coating a low-surface-energy substance (octadecanethiol) on the surface of MS-PDA-Ag. The obtained S-MS-PDA-Ag presents the capacities of oil/organics adsorption and water repellence, which can separate the insoluble oil/organics from water. The melamine sponge immobilized with Ag NPs demonstrates prominent catalytic reduction of 4-NP, antibacterial activity and the superhydrophobic derivative presents the capacity of insoluble oil/organics separation from oil–water mixtures, exhibiting high potential in the remediation of polluted water.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c14544