Imputing cognitive impairment in SPARK, a large autism cohort

Diverse large cohorts are necessary for dissecting subtypes of autism, and intellectual disability is one of the most robust endophenotypes for analysis. However, current cognitive assessment methods are not feasible at scale. We developed five commonly used machine learning models to predict cognit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autism research 2022-01, Vol.15 (1), p.156-170
Hauptverfasser: Shu, Chang, Green Snyder, LeeAnne, Shen, Yufeng, Chung, Wendy K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diverse large cohorts are necessary for dissecting subtypes of autism, and intellectual disability is one of the most robust endophenotypes for analysis. However, current cognitive assessment methods are not feasible at scale. We developed five commonly used machine learning models to predict cognitive impairment (FSIQ
ISSN:1939-3792
1939-3806
DOI:10.1002/aur.2622