Imputing cognitive impairment in SPARK, a large autism cohort
Diverse large cohorts are necessary for dissecting subtypes of autism, and intellectual disability is one of the most robust endophenotypes for analysis. However, current cognitive assessment methods are not feasible at scale. We developed five commonly used machine learning models to predict cognit...
Gespeichert in:
Veröffentlicht in: | Autism research 2022-01, Vol.15 (1), p.156-170 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diverse large cohorts are necessary for dissecting subtypes of autism, and intellectual disability is one of the most robust endophenotypes for analysis. However, current cognitive assessment methods are not feasible at scale. We developed five commonly used machine learning models to predict cognitive impairment (FSIQ |
---|---|
ISSN: | 1939-3792 1939-3806 |
DOI: | 10.1002/aur.2622 |