Insufficiency of FZR1 disturbs HSC quiescence by inhibiting ubiquitin-dependent degradation of RUNX1 in aplastic anemia
FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreas...
Gespeichert in:
Veröffentlicht in: | Leukemia 2022-03, Vol.36 (3), p.834-846 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreased quiescence of HSC. Haploinsufficiency of
Fzr1
shows impaired quiescence and self-renewal ability of HSC in two
Fzr1
heterozygous knockout mouse models. Mechanistically, FZR1 insufficiency inhibits the ubiquitination of RUNX1 protein at lysine 125, leading to the accumulation of RUNX1 protein, which disturbs the quiescence of HSCs in SAA patients. Moreover, downregulation of Runx1 reversed the loss of quiescence and impaired long-term self-renew ability in
Fzr1
+/−
HSCs in vivo and impaired repopulation capacity in BM from SAA patients in vitro. Our findings, therefore, raise the possibility of a decisive role of the FZR1-RUNX1 pathway in the pathogenesis of SAA via deregulation of HSC quiescence. |
---|---|
ISSN: | 0887-6924 1476-5551 |
DOI: | 10.1038/s41375-021-01445-5 |