Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation

With Fe3+ as both the morphology-controlling agent and dopant, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. After the electrocatalytic activation, the iron-rich surface transformed into active Fe-doped nickel ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-02, Vol.608, p.599-604
Hauptverfasser: Zhang, Lulu, Yang, Yongqiang, Zhu, Huaze, Cheng, Hui-Ming, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 604
container_issue
container_start_page 599
container_title Journal of colloid and interface science
container_volume 608
creator Zhang, Lulu
Yang, Yongqiang
Zhu, Huaze
Cheng, Hui-Ming
Liu, Gang
description With Fe3+ as both the morphology-controlling agent and dopant, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. After the electrocatalytic activation, the iron-rich surface transformed into active Fe-doped nickel oxyhydroxide, while the inner {001}-oriented NiS2 retained, endowing the catalysts with high OER activity and long-term stability. [Display omitted] Developing high-performance electrocatalysts with favorable phase, surface structure and electronic structure for oxygen evolution reaction (OER) is crucial for efficient electrocatalytic water splitting. With Fe3+ ions as both dopant and morphology-controlling agent, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. The initial electrocatalytic OER activation processes led to the conversion of iron-rich surface layers of the NiS2 microcrystals into Fe-doped Ni (oxy)hydroxide as the shell and the residual inner of the NiS2 microcrystals as the core. Such Fe-doped NiS2 microcrystals with the derived core/shell structure only required a small OER overpotential of 277 mV to reach an electrochemical current density of 10 mA/cm2, and showed a good stability in a more than 20 h duration test almost without overpotential increase.
doi_str_mv 10.1016/j.jcis.2021.09.096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2580939080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721015551</els_id><sourcerecordid>2580939080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-399b3e832ce908e7ed2e7779693fe1817692e9d2076bbff7dd7a4822c6fe33cc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFWWbmbMw5lMwI0UH4WiC3UnhDS5gxmmkzFJtUX876bUtXDgLu53DpyD0DklJSW0vuzKzrhYMsJoSWRWfYAmlMiqEJTwQzQh-VNIIcUxOomxI4TSqpIT9DYPfiisH8HiR_fM8MqZ4E3YxqT7iL9cesewGX3M_-_s-sGtNpAibn3A0INJmdaZ3SZn8JdOELDfOKuT88MpOmpzCpz93Sl6vbt9mT0Ui6f7-exmURjOeSq4lEsODWcGJGlAgGUghJC15C3QhopaMpCWEVEvl20rrBX6qmHM1C1wbgyfoot97hj8xxpiUisXDfS9HsCvo2JVQyTP2SSjbI_mljEGaNUY3EqHraJE7aZUndpNqXZTKiKz6my63psgl_h0EFQ0DgYD1oW8gLLe_Wf_BTL7ffg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580939080</pqid></control><display><type>article</type><title>Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Lulu ; Yang, Yongqiang ; Zhu, Huaze ; Cheng, Hui-Ming ; Liu, Gang</creator><creatorcontrib>Zhang, Lulu ; Yang, Yongqiang ; Zhu, Huaze ; Cheng, Hui-Ming ; Liu, Gang</creatorcontrib><description>With Fe3+ as both the morphology-controlling agent and dopant, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. After the electrocatalytic activation, the iron-rich surface transformed into active Fe-doped nickel oxyhydroxide, while the inner {001}-oriented NiS2 retained, endowing the catalysts with high OER activity and long-term stability. [Display omitted] Developing high-performance electrocatalysts with favorable phase, surface structure and electronic structure for oxygen evolution reaction (OER) is crucial for efficient electrocatalytic water splitting. With Fe3+ ions as both dopant and morphology-controlling agent, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. The initial electrocatalytic OER activation processes led to the conversion of iron-rich surface layers of the NiS2 microcrystals into Fe-doped Ni (oxy)hydroxide as the shell and the residual inner of the NiS2 microcrystals as the core. Such Fe-doped NiS2 microcrystals with the derived core/shell structure only required a small OER overpotential of 277 mV to reach an electrochemical current density of 10 mA/cm2, and showed a good stability in a more than 20 h duration test almost without overpotential increase.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.09.096</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Doping ; Electrocatalyst ; Facet ; NiS2 ; Oxygen evolution reaction (OER)</subject><ispartof>Journal of colloid and interface science, 2022-02, Vol.608, p.599-604</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-399b3e832ce908e7ed2e7779693fe1817692e9d2076bbff7dd7a4822c6fe33cc3</citedby><cites>FETCH-LOGICAL-c333t-399b3e832ce908e7ed2e7779693fe1817692e9d2076bbff7dd7a4822c6fe33cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2021.09.096$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Zhang, Lulu</creatorcontrib><creatorcontrib>Yang, Yongqiang</creatorcontrib><creatorcontrib>Zhu, Huaze</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation</title><title>Journal of colloid and interface science</title><description>With Fe3+ as both the morphology-controlling agent and dopant, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. After the electrocatalytic activation, the iron-rich surface transformed into active Fe-doped nickel oxyhydroxide, while the inner {001}-oriented NiS2 retained, endowing the catalysts with high OER activity and long-term stability. [Display omitted] Developing high-performance electrocatalysts with favorable phase, surface structure and electronic structure for oxygen evolution reaction (OER) is crucial for efficient electrocatalytic water splitting. With Fe3+ ions as both dopant and morphology-controlling agent, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. The initial electrocatalytic OER activation processes led to the conversion of iron-rich surface layers of the NiS2 microcrystals into Fe-doped Ni (oxy)hydroxide as the shell and the residual inner of the NiS2 microcrystals as the core. Such Fe-doped NiS2 microcrystals with the derived core/shell structure only required a small OER overpotential of 277 mV to reach an electrochemical current density of 10 mA/cm2, and showed a good stability in a more than 20 h duration test almost without overpotential increase.</description><subject>Doping</subject><subject>Electrocatalyst</subject><subject>Facet</subject><subject>NiS2</subject><subject>Oxygen evolution reaction (OER)</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFWWbmbMw5lMwI0UH4WiC3UnhDS5gxmmkzFJtUX876bUtXDgLu53DpyD0DklJSW0vuzKzrhYMsJoSWRWfYAmlMiqEJTwQzQh-VNIIcUxOomxI4TSqpIT9DYPfiisH8HiR_fM8MqZ4E3YxqT7iL9cesewGX3M_-_s-sGtNpAibn3A0INJmdaZ3SZn8JdOELDfOKuT88MpOmpzCpz93Sl6vbt9mT0Ui6f7-exmURjOeSq4lEsODWcGJGlAgGUghJC15C3QhopaMpCWEVEvl20rrBX6qmHM1C1wbgyfoot97hj8xxpiUisXDfS9HsCvo2JVQyTP2SSjbI_mljEGaNUY3EqHraJE7aZUndpNqXZTKiKz6my63psgl_h0EFQ0DgYD1oW8gLLe_Wf_BTL7ffg</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Zhang, Lulu</creator><creator>Yang, Yongqiang</creator><creator>Zhu, Huaze</creator><creator>Cheng, Hui-Ming</creator><creator>Liu, Gang</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220215</creationdate><title>Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation</title><author>Zhang, Lulu ; Yang, Yongqiang ; Zhu, Huaze ; Cheng, Hui-Ming ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-399b3e832ce908e7ed2e7779693fe1817692e9d2076bbff7dd7a4822c6fe33cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Doping</topic><topic>Electrocatalyst</topic><topic>Facet</topic><topic>NiS2</topic><topic>Oxygen evolution reaction (OER)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lulu</creatorcontrib><creatorcontrib>Yang, Yongqiang</creatorcontrib><creatorcontrib>Zhu, Huaze</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lulu</au><au>Yang, Yongqiang</au><au>Zhu, Huaze</au><au>Cheng, Hui-Ming</au><au>Liu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>608</volume><spage>599</spage><epage>604</epage><pages>599-604</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>With Fe3+ as both the morphology-controlling agent and dopant, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. After the electrocatalytic activation, the iron-rich surface transformed into active Fe-doped nickel oxyhydroxide, while the inner {001}-oriented NiS2 retained, endowing the catalysts with high OER activity and long-term stability. [Display omitted] Developing high-performance electrocatalysts with favorable phase, surface structure and electronic structure for oxygen evolution reaction (OER) is crucial for efficient electrocatalytic water splitting. With Fe3+ ions as both dopant and morphology-controlling agent, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. The initial electrocatalytic OER activation processes led to the conversion of iron-rich surface layers of the NiS2 microcrystals into Fe-doped Ni (oxy)hydroxide as the shell and the residual inner of the NiS2 microcrystals as the core. Such Fe-doped NiS2 microcrystals with the derived core/shell structure only required a small OER overpotential of 277 mV to reach an electrochemical current density of 10 mA/cm2, and showed a good stability in a more than 20 h duration test almost without overpotential increase.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2021.09.096</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-02, Vol.608, p.599-604
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2580939080
source Access via ScienceDirect (Elsevier)
subjects Doping
Electrocatalyst
Facet
NiS2
Oxygen evolution reaction (OER)
title Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron-doped%20NiS2%20microcrystals%20with%20exposed%20%7B001%7D%20facets%20for%20electrocatalytic%20water%20oxidation&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhang,%20Lulu&rft.date=2022-02-15&rft.volume=608&rft.spage=599&rft.epage=604&rft.pages=599-604&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.09.096&rft_dat=%3Cproquest_cross%3E2580939080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580939080&rft_id=info:pmid/&rft_els_id=S0021979721015551&rfr_iscdi=true