Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation

With Fe3+ as both the morphology-controlling agent and dopant, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. After the electrocatalytic activation, the iron-rich surface transformed into active Fe-doped nickel ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-02, Vol.608, p.599-604
Hauptverfasser: Zhang, Lulu, Yang, Yongqiang, Zhu, Huaze, Cheng, Hui-Ming, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With Fe3+ as both the morphology-controlling agent and dopant, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. After the electrocatalytic activation, the iron-rich surface transformed into active Fe-doped nickel oxyhydroxide, while the inner {001}-oriented NiS2 retained, endowing the catalysts with high OER activity and long-term stability. [Display omitted] Developing high-performance electrocatalysts with favorable phase, surface structure and electronic structure for oxygen evolution reaction (OER) is crucial for efficient electrocatalytic water splitting. With Fe3+ ions as both dopant and morphology-controlling agent, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. The initial electrocatalytic OER activation processes led to the conversion of iron-rich surface layers of the NiS2 microcrystals into Fe-doped Ni (oxy)hydroxide as the shell and the residual inner of the NiS2 microcrystals as the core. Such Fe-doped NiS2 microcrystals with the derived core/shell structure only required a small OER overpotential of 277 mV to reach an electrochemical current density of 10 mA/cm2, and showed a good stability in a more than 20 h duration test almost without overpotential increase.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.09.096