Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression

Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-09, Vol.127 (13), p.1-130501
Hauptverfasser: Kandala, A, Wei, K X, Srinivasan, S, Magesan, E, Carnevale, S, Keefe, G A, Klaus, D, Dial, O, McKay, D C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improving two-qubit gate performance and suppressing cross talk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the coupling to realize faster gates has been intrinsically linked to enhanced cross talk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1, T2 > 100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction, we demonstrate a 180 ns single-pulse controlled not (cnot) gate, and measure a cnot fidelity of 99.77(2)% from interleaved randomized benchmarking.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.130501